/* cw_binaural~: a binaural synthesis external for pure data by David Doukhan - david.doukhan@gmail.com - http://perso.limsi.fr/doukhan and Anne Sedes - sedes.anne@gmail.com Copyright (C) 2009-2011 David Doukhan and Anne Sedes For more details, see CW_binaural~, a binaural synthesis external for Pure Data David Doukhan and Anne Sedes, PDCON09 This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include #include //needed for fft implementation #include "minphase_hrtfcont.hpp" #include "flyweight_ir_factory.hpp" MinPhaseHrtfCont::MinPhaseHrtfCont(const ir_key&k): HrtfCont(k) { ir_key k2 = k; // set impulse response length _ir_length = k.length; // FIXME: IR size verification ??? => power of 2 // get the container storing the coresponding temporal impulse response k2.minp_ap_dec = false; HrtfCont* hc = FlyweightIrFactory::instance()->hrtf_set_get(k2); // iterate on the container storing the temporal impulse response for (angle1_cit ie = hc->map_get()->begin(); ie != hc->map_get()->end(); ie++) for (angle2_cit ia2 = ie->second.begin(); ia2 != ie->second.end(); ia2++) { // current azimuth and elevation const float el = ie->first; const float az = ia2->first; // allocate buffers float *lbuf = _m[el][az].lbuf = new float[_ir_length]; float *rbuf = _m[el][az].rbuf = new float[_ir_length]; minphase_ir(ia2->second.lbuf, lbuf, _ir_length); minphase_ir(ia2->second.rbuf, rbuf, _ir_length); } } // store in dst the magnitude of spectrum src of size n // assumption: src is the specetrum of a real signal void MinPhaseHrtfCont::magnitude(const float* src, float* dst, size_t n) { for (size_t i = 1; i < n/2; ++i) { dst[i] = sqrt(src[i]*src[i] + src[n-i] * src[n-i]); dst[n -i] = dst[i]; } dst[0] = src[0] >= 0 ? src[0] : -src[0]; dst[n/2] = src[n/2] >= 0 ? src[n/2] : -src[n/2]; } // store in dst the imaginary part of hilbert transform // applied to signal src of size n void MinPhaseHrtfCont::im_hilbert(const float* src, float* dst, size_t n) { size_t i; float tmp; if (dst != src) for (i = 0; i < n; ++i) dst[i] = src[i]; mayer_realfft(n, dst); for (i = 1; i < n/2; ++i) { tmp = dst[i]; dst[i] = -dst[n -i]; dst[n-i] = tmp; } dst[0] = dst[n/2] = 0; mayer_realifft(n, dst); for (i = 0; i < n; ++i) dst[i] /= n; } // store in dst the minphase impulse response corresponding to src void MinPhaseHrtfCont::minphase_ir(const float* src, float* dst, int n) { float *sig_spectrum = new float[n]; float *magn, *phase; int i; // compute the spectrum from input signal for (i = 0; i < n; ++i) sig_spectrum[i] = src[i]; mayer_realfft(n, sig_spectrum); // get the magnitude of the spectrum => symetric signal magn = new float[n]; magnitude(sig_spectrum, magn, n); // compute hilbert transform of the log of the magnitude // this computation correspond to the minimum phase phase = new float[n]; for (i = 0; i < n; ++i) phase[i] = -log(magn[i]); im_hilbert(phase, phase, n); float* real = new float[n]; float* imag = new float[n]; for (i = 0; i < n; ++i) { real[i] = magn[i] * cos(phase[i]); imag[i] = magn[i] * sin(phase[i]); } mayer_ifft(n, real, imag); delete [] sig_spectrum; delete [] imag; delete [] magn; delete [] phase; for (i = 0; i < n; ++i) dst[i] = real[i] /= n; delete [] real; }