aboutsummaryrefslogtreecommitdiff
path: root/ether~.c
diff options
context:
space:
mode:
Diffstat (limited to 'ether~.c')
-rw-r--r--ether~.c514
1 files changed, 514 insertions, 0 deletions
diff --git a/ether~.c b/ether~.c
new file mode 100644
index 0000000..4293676
--- /dev/null
+++ b/ether~.c
@@ -0,0 +1,514 @@
+#include "MSPd.h"
+#include "fftease.h"
+
+#if MSP
+void *ether_class;
+#endif
+#if PD
+static t_class *ether_class;
+#endif
+
+#define OBJECT_NAME "ether~"
+
+
+/* Added a new inlet for the composite index */
+
+typedef struct _ether
+{
+#if MSP
+ t_pxobject x_obj;
+#endif
+#if PD
+ t_object x_obj;
+ float x_f;
+#endif
+ int R;
+ int N;
+ int N2;
+ int Nw;
+ int Nw2;
+ int D;
+ int i;
+ int inCount;
+ int invert;
+ int *bitshuffle;
+
+ float threshMult;
+ float *Wanal;
+ float *Wsyn;
+ float *inputOne;
+ float *inputTwo;
+ float *Hwin;
+ float *bufferOne;
+ float *bufferTwo;
+ float *channelOne;
+ float *channelTwo;
+ float *output;
+ float mult;
+ float *trigland;
+ short connected[8];
+ short mute;
+ int overlap;//overlap factor
+ int winfac;//window factor
+ int vs;//vector size
+
+} t_ether;
+
+
+void *ether_new(t_symbol *s, int argc, t_atom *argv);
+t_int *ether_perform(t_int *w);
+void ether_dsp(t_ether *x, t_signal **sp, short *count);
+void ether_assist(t_ether *x, void *b, long m, long a, char *s);
+void ether_dest(t_ether *x, double f);
+void ether_invert(t_ether *x, t_floatarg toggle);
+void ether_init(t_ether *x, short initialized);
+void ether_free(t_ether *x);
+void ether_mute(t_ether *x, t_floatarg toggle);
+void ether_fftinfo(t_ether *x);
+void ether_winfac(t_ether *x, t_floatarg f);
+void ether_overlap(t_ether *x, t_floatarg o);
+void ether_tilde_setup(void);
+
+
+#if MSP
+void main(void)
+{
+ setup((t_messlist **)&ether_class, (method) ether_new, (method)ether_free, (short) sizeof(t_ether),
+ 0, A_GIMME, 0);
+
+ addmess((method)ether_dsp, "dsp", A_CANT, 0);
+ addmess((method)ether_assist,"assist",A_CANT,0);
+ addfloat((method)ether_dest);
+ addmess((method)ether_invert,"invert", A_FLOAT, 0);
+ addmess((method)ether_mute,"mute", A_FLOAT, 0);
+ addmess((method)ether_overlap,"overlap", A_FLOAT, 0);
+ addmess((method)ether_winfac,"winfac", A_FLOAT, 0);
+ addmess((method)ether_fftinfo,"fftinfo", 0);
+ dsp_initclass();
+ post("%s %s",OBJECT_NAME,FFTEASE_ANNOUNCEMENT);
+
+}
+
+void ether_dest(t_ether *x, double f)
+{
+ x->threshMult = (float) f;
+}
+#endif
+
+#if PD
+void ether_tilde_setup(void)
+{
+ ether_class = class_new(gensym("ether~"), (t_newmethod)ether_new,
+ (t_method)ether_free ,sizeof(t_ether), 0,A_GIMME,0);
+ CLASS_MAINSIGNALIN(ether_class, t_ether, x_f);
+ class_addmethod(ether_class, (t_method)ether_dsp, gensym("dsp"), 0);
+ class_addmethod(ether_class, (t_method)ether_assist, gensym("assist"), 0);
+ class_addmethod(ether_class, (t_method)ether_invert, gensym("invert"), A_FLOAT,0);
+ class_addmethod(ether_class, (t_method)ether_overlap, gensym("overlap"), A_FLOAT,0);
+ class_addmethod(ether_class, (t_method)ether_mute, gensym("mute"), A_FLOAT,0);
+ class_addmethod(ether_class, (t_method)ether_winfac, gensym("winfac"), A_FLOAT,0);
+ class_addmethod(ether_class, (t_method)ether_fftinfo, gensym("fftinfo"), A_CANT,0);
+ post("%s %s",OBJECT_NAME,FFTEASE_ANNOUNCEMENT);
+}
+#endif
+
+
+
+/* diagnostic messages for Max */
+
+
+void ether_assist (t_ether *x, void *b, long msg, long arg, char *dst)
+{
+
+ if (msg == 1) {
+
+ switch (arg) {
+
+ case 0: sprintf(dst,"(signal) Input One");break;
+ case 1: sprintf(dst,"(signal) Input Two"); break;
+ case 2: sprintf(dst,"(signal) Composite Index"); break;
+ }
+ }
+
+ else {
+
+ if (msg == 2)
+ sprintf(dst,"(signal) Output");
+
+ }
+}
+
+void ether_free(t_ether *x)
+{
+#if MSP
+ dsp_free((t_pxobject *) x);
+#endif
+ freebytes(x->trigland,0);
+ freebytes(x->bitshuffle,0);
+ freebytes(x->Wanal,0);
+ freebytes(x->Wsyn,0);
+ freebytes(x->Hwin,0);
+ freebytes(x->inputOne,0);
+ freebytes(x->inputTwo,0);
+ freebytes(x->bufferOne,0);
+ freebytes(x->bufferTwo,0);
+ freebytes(x->channelOne,0);
+ freebytes(x->channelTwo,0);
+ freebytes(x->output,0);
+}
+
+void ether_overlap(t_ether *x, t_floatarg df)
+{
+int o = (int)df;
+ if(!power_of_two(o)){
+ error("%d is not a power of two",o);
+ return;
+ }
+ x->overlap = o;
+ ether_init(x,1);
+}
+
+void ether_winfac(t_ether *x, t_floatarg f)
+{
+int wf = (int)f;
+ if(!power_of_two(wf)){
+ error("%f is not a power of two",f);
+ return;
+ }
+ x->winfac = wf;
+ ether_init(x,1);
+}
+
+void ether_fftinfo( t_ether *x )
+{
+ if( ! x->overlap ){
+ post("zero overlap!");
+ return;
+ }
+ post("%s: FFT size %d, hopsize %d, windowsize %d", OBJECT_NAME, x->N, x->N/x->overlap, x->Nw);
+}
+
+
+void *ether_new(t_symbol *s, int argc, t_atom *argv)
+{
+
+#if MSP
+ t_ether *x = (t_ether *) newobject(ether_class);
+ dsp_setup((t_pxobject *)x,3);
+ outlet_new((t_pxobject *)x, "signal");
+#endif
+#if PD
+ t_ether *x = (t_ether *)pd_new(ether_class);
+ /* add two additional signal inlets */
+ inlet_new(&x->x_obj, &x->x_obj.ob_pd,gensym("signal"), gensym("signal"));
+ inlet_new(&x->x_obj, &x->x_obj.ob_pd,gensym("signal"), gensym("signal"));
+ outlet_new(&x->x_obj, gensym("signal"));
+#endif
+
+/* optional arguments: overlap winfac */
+
+ x->overlap = atom_getfloatarg(0,argc,argv);
+ x->winfac = atom_getfloatarg(1,argc,argv);
+ if(!power_of_two(x->overlap)){
+ x->overlap = 4;
+ }
+ if(!power_of_two(x->winfac)){
+ x->winfac = 1;
+ }
+ x->vs = sys_getblksize();
+ x->R = sys_getsr();
+ ether_init(x,0);
+
+ return (x);
+}
+
+void ether_init(t_ether *x, short initialized)
+{
+ int i;
+
+ x->D = x->vs;
+ x->N = x->D * x->overlap;
+ x->Nw = x->N * x->winfac;
+ limit_fftsize(&x->N,&x->Nw,OBJECT_NAME);
+ x->N2 = (x->N)>>1;
+ x->Nw2 = (x->Nw)>>1;
+ x->inCount = -(x->Nw);
+ x->mult = 1. / (float) x->N;
+ if(!initialized){
+ x->mute = 0;
+ x->invert = 0;
+ x->threshMult = 0.;
+ x->Wanal = (float *) getbytes( (MAX_Nw) * sizeof(float));
+ x->Wsyn = (float *) getbytes( (MAX_Nw) * sizeof(float));
+ x->Hwin = (float *) getbytes( (MAX_Nw) * sizeof(float));
+ x->inputOne = (float *) getbytes(MAX_Nw * sizeof(float));
+ x->inputTwo = (float *) getbytes(MAX_Nw * sizeof(float));
+ x->bufferOne = (float *) getbytes(MAX_N * sizeof(float));
+ x->bufferTwo = (float *) getbytes(MAX_N * sizeof(float));
+ x->channelOne = (float *) getbytes(MAX_N+2 * sizeof(float));
+ x->channelTwo = (float *) getbytes(MAX_N+2 * sizeof(float));
+ x->output = (float *) getbytes(MAX_Nw * sizeof(float));
+ x->bitshuffle = (int *) getbytes(MAX_N * 2 * sizeof(int));
+ x->trigland = (float *) getbytes(MAX_N * 2 * sizeof(float));
+ }
+ memset((char *)x->inputOne,0,x->Nw * sizeof(float));
+ memset((char *)x->inputTwo,0,x->Nw * sizeof(float));
+ memset((char *)x->output,0,x->Nw * sizeof(float));
+
+ init_rdft( x->N, x->bitshuffle, x->trigland);
+ makehanning( x->Hwin, x->Wanal, x->Wsyn, x->Nw, x->N, x->D, 1);
+
+}
+
+
+t_int *ether_perform(t_int *w)
+{
+
+ int i,j,
+ inCount,
+ R,
+ N,
+ N2,
+ D,
+ Nw,
+ invert = 1,
+ even, odd,
+ *bitshuffle;
+
+ float maxamp,
+ threshMult = 1.,
+ mult,
+ a1, b1,
+ a2, b2,
+ *inputOne,
+ *inputTwo,
+ *bufferOne,
+ *bufferTwo,
+ *output,
+ *Wanal,
+ *Wsyn,
+ *channelOne,
+ *channelTwo,
+ *trigland;
+
+
+/* get our inlets and outlets */
+
+ t_ether *x = (t_ether *) (w[1]);
+ t_float *inOne = (t_float *)(w[2]);
+ t_float *inTwo = (t_float *)(w[3]);
+ t_float *vec_threshMult = (t_float *)(w[4]);
+ t_float *out = (t_float *)(w[5]);
+ t_int n = w[6];
+
+ short *connected = x->connected;
+
+/* dereference structure */
+
+ inputOne = x->inputOne;
+ inputTwo = x->inputTwo;
+ bufferOne = x->bufferOne;
+ bufferTwo = x->bufferTwo;
+ inCount = x->inCount;
+ R = x->R;
+ N = x->N;
+ N2 = x->N2;
+ D = x->D;
+ Nw = x->Nw;
+ Wanal = x->Wanal;
+ Wsyn = x->Wsyn;
+ output = x->output;
+ channelOne = x->channelOne;
+ channelTwo = x->channelTwo;
+ bitshuffle = x->bitshuffle;
+ trigland = x->trigland;
+ mult = x->mult;
+ invert = x->invert;
+
+ if(connected[2]){
+ threshMult = *vec_threshMult;
+ }
+ else if ( x->threshMult != 0. ){
+ threshMult = x->threshMult;
+ }
+ else {
+ threshMult = 1.0;
+ }
+
+ if(x->mute){
+ while(n--)
+ *out++ = 0.0;
+ return w+7;
+ }
+
+/* fill our retaining buffers */
+
+ inCount += D;
+
+ for ( j = 0 ; j < Nw - D ; j++ ) {
+ inputOne[j] = inputOne[j+D];
+ inputTwo[j] = inputTwo[j+D];
+ }
+
+ for ( j = Nw - D; j < Nw; j++ ) {
+ inputOne[j] = *inOne++;
+ inputTwo[j] = *inTwo++;
+ }
+
+/* apply hamming window and fold our window buffer into the fft buffer */
+
+ fold( inputOne, Wanal, Nw, bufferOne, N, inCount );
+ fold( inputTwo, Wanal, Nw, bufferTwo, N, inCount );
+
+
+/* do an fft */
+
+ rdft( N, 1, bufferOne, bitshuffle, trigland );
+ rdft( N, 1, bufferTwo, bitshuffle, trigland );
+
+/* use slow fft */
+
+
+/* use redundant coding for speed, even though moving the invert variable
+ comparison outside of the for loop will give us only a minimal performance
+ increase (hypot and atan2 are the most intensive portions of this code).
+ consider adding a table lookup for atan2 instead.
+*/
+
+ if (invert) {
+
+/* convert to polar coordinates from complex values */
+
+ for ( i = 0; i <= N2; i++ ) {
+ odd = ( even = i<<1 ) + 1;
+
+ a1 = ( i == N2 ? *(bufferOne+1) : *(bufferOne+even) );
+ b1 = ( i == 0 || i == N2 ? 0. : *(bufferOne+odd) );
+
+ a2 = ( i == N2 ? *(bufferTwo+1) : *(bufferTwo+even) );
+ b2 = ( i == 0 || i == N2 ? 0. : *(bufferTwo+odd) );
+
+ *(channelOne+even) = hypot( a1, b1 );
+ *(channelOne+odd) = -atan2( b1, a1 );
+
+ *(channelTwo+even) = hypot( a2, b2 );
+ *(channelTwo+odd) = -atan2( b2, a2 );
+
+/* use simple threshold for inverse compositing */
+
+ if ( *(channelOne+even) > *(channelTwo+even) * threshMult )
+ *(channelOne+even) = *(channelTwo+even);
+
+ if ( *(channelOne+odd) == 0. )
+ *(channelOne+odd) = *(channelTwo+odd);
+ }
+ }
+
+ else {
+
+/* convert to polar coordinates from complex values */
+
+ for ( i = 0; i <= N2; i++ ) {
+
+ odd = ( even = i<<1 ) + 1;
+
+ a1 = ( i == N2 ? *(bufferOne+1) : *(bufferOne+even) );
+ b1 = ( i == 0 || i == N2 ? 0. : *(bufferOne+odd) );
+
+ a2 = ( i == N2 ? *(bufferTwo+1) : *(bufferTwo+even) );
+ b2 = ( i == 0 || i == N2 ? 0. : *(bufferTwo+odd) );
+
+ *(channelOne+even) = hypot( a1, b1 );
+ *(channelOne+odd) = -atan2( b1, a1 );
+
+ *(channelTwo+even) = hypot( a2, b2 );
+ *(channelTwo+odd) = -atan2( b2, a2 );
+
+/* use simple threshold for compositing */
+
+ if ( *(channelOne+even) < *(channelTwo+even) * threshMult )
+ *(channelOne+even) = *(channelTwo+even);
+
+ if ( *(channelOne+odd) == 0. )
+ *(channelOne+odd) = *(channelTwo+odd);
+ }
+ }
+
+/* convert back to complex form, read for the inverse fft */
+
+ for ( i = 0; i <= N2; i++ ) {
+
+ odd = ( even = i<<1 ) + 1;
+
+ *(bufferOne+even) = *(channelOne+even) * cos( *(channelOne+odd) );
+
+ if ( i != N2 )
+ *(bufferOne+odd) = -(*(channelOne+even)) * sin( *(channelOne+odd) );
+ }
+
+
+/* do an inverse fft */
+
+ rdft( N, -1, bufferOne, bitshuffle, trigland );
+
+
+/* dewindow our result */
+
+ overlapadd( bufferOne, N, Wsyn, output, Nw, inCount);
+
+/* set our output and adjust our retaining output buffer */
+
+ for ( j = 0; j < D; j++ )
+ *out++ = output[j] * mult;
+
+ for ( j = 0; j < Nw - D; j++ )
+ output[j] = output[j+D];
+
+ for ( j = Nw - D; j < Nw; j++ )
+ output[j] = 0.;
+
+
+/* restore state variables */
+
+ x->inCount = inCount % Nw;
+ return (w+7);
+}
+
+void ether_mute(t_ether *x, t_floatarg toggle)
+{
+ x->mute = (short)toggle;
+}
+
+void ether_invert(t_ether *x, t_floatarg toggle)
+{
+ x->invert = (int)toggle;
+}
+
+void ether_dsp(t_ether *x, t_signal **sp, short *count)
+{
+ long i;
+#if MSP
+ for( i = 0; i < 3; i++ ){
+ x->connected[i] = count[i];
+ }
+#endif
+ /* signal is always connected in Pd */
+#if PD
+ for( i = 0; i < 3; i++ ){
+ x->connected[i] = 1;
+ }
+#endif
+ /* reinitialize if vector size or sampling rate has been changed */
+ if(x->vs != sp[0]->s_n || x->R != sp[0]->s_sr){
+ x->vs = sp[0]->s_n;
+ x->R = sp[0]->s_sr;
+ ether_init(x,1);
+ }
+ dsp_add(ether_perform, 6, x,
+ sp[0]->s_vec,
+ sp[1]->s_vec,
+ sp[2]->s_vec,
+ sp[3]->s_vec,
+ sp[0]->s_n);
+}
+