From b418fb91e7bb45d7b5f1eb8b19703441ae94eb13 Mon Sep 17 00:00:00 2001 From: Hans-Christoph Steiner Date: Thu, 9 Feb 2006 16:18:39 +0000 Subject: got everything building and working, including building single-object/single-file objects with a shared dylib. Now got to get it integrated into the build system svn path=/trunk/externals/fftease/; revision=4574 --- burrow~.c | 545 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 545 insertions(+) create mode 100644 burrow~.c (limited to 'burrow~.c') diff --git a/burrow~.c b/burrow~.c new file mode 100644 index 0000000..cf5be2d --- /dev/null +++ b/burrow~.c @@ -0,0 +1,545 @@ +#include "MSPd.h" +#include "fftease.h" + +#if MSP + void *burrow_class; +#endif +#if PD + static t_class *burrow_class; +#endif + +#define OBJECT_NAME "burrow~" + +/* after adding fixes, window factors > 1 are defective. Is there +a remaining bug, or is this a problem for FFT-only processors? */ + +/* A few changes: + +Threshold and Multiplier now have their own +inlets, which accept (signal/float). The input +is now linear, rather than in dB. Reasons for this: + +1) Linear input is the Max/MSP convention +2) It is easy to convert from linear to dB in Max +3) (My favorite) This cuts down on programmer overhead. + + */ + +typedef struct _burrow +{ +#if MSP + t_pxobject x_obj; +#endif +#if PD + t_object x_obj; + float x_f; +#endif + int R; + int N; + int N2; + int Nw; + int Nw2; + int D; + int i; + int inCount; + int invert; + int *bitshuffle; + + float threshold; + float multiplier; + float mult; + float *Wanal; + float *Wsyn; + float *inputOne; + float *inputTwo; + float *Hwin; + float *bufferOne; + float *bufferTwo; + float *channelOne; + float *channelTwo; + float *output; + float *trigland; + + short connected[8]; + short mute; + int overlap;//overlap factor + int winfac;//window factor + int vs;//vector size +} t_burrow; + + +/* msp function prototypes */ + +void *burrow_new(t_symbol *s, int argc, t_atom *argv); +t_int *offset_perform(t_int *w); +t_int *burrow_perform(t_int *w); +void burrow_dsp(t_burrow *x, t_signal **sp, short *count); +void burrow_assist(t_burrow *x, void *b, long m, long a, char *s); +void burrow_float(t_burrow *x, t_floatarg myFloat); +void burrow_init(t_burrow *x, short initialized); +void burrow_free(t_burrow *x); +void burrow_invert(t_burrow *x, t_floatarg toggle); +void burrow_mute(t_burrow *x, t_floatarg toggle); +void burrow_fftinfo(t_burrow *x); +void burrow_tilde_setup(void); +void burrow_overlap(t_burrow *x, t_floatarg o); +void burrow_winfac(t_burrow *x, t_floatarg f); + + +#if MSP +void main(void) +{ + setup((t_messlist **)&burrow_class,(method) burrow_new, +(method)burrow_free, (short) sizeof(t_burrow),0, A_GIMME, 0); + addmess((method)burrow_dsp, "dsp", A_CANT, 0); + addmess((method)burrow_assist,"assist",A_CANT,0); + addmess((method)burrow_invert,"invert", A_FLOAT, 0); + addmess((method)burrow_overlap,"overlap", A_FLOAT, 0); + addmess((method)burrow_mute,"mute", A_FLOAT, 0); + addmess((method)burrow_winfac,"winfac",A_FLOAT,0); + addmess((method)burrow_fftinfo,"fftinfo", 0); + addfloat((method)burrow_float); + dsp_initclass(); + post("%s %s",OBJECT_NAME,FFTEASE_ANNOUNCEMENT); +} + +/* float input handling routines (MSP only) */ + +void burrow_float(t_burrow *x, t_floatarg myFloat) +{ +int inlet = ((t_pxobject*)x)->z_in; + if ( inlet == 2 ) // added two outlets so position is moved over + x->threshold = myFloat; + + if ( inlet == 3 ) + x->multiplier = myFloat; +} +#endif +#if PD +void burrow_tilde_setup(void) +{ + burrow_class = class_new(gensym("burrow~"), (t_newmethod)burrow_new, + (t_method)burrow_free ,sizeof(t_burrow), 0,A_GIMME,0); + CLASS_MAINSIGNALIN(burrow_class, t_burrow, x_f); + class_addmethod(burrow_class, (t_method)burrow_dsp, gensym("dsp"), 0); + class_addmethod(burrow_class, (t_method)burrow_assist, gensym("assist"), 0); + class_addmethod(burrow_class, (t_method)burrow_invert, gensym("invert"), A_FLOAT,0); + class_addmethod(burrow_class, (t_method)burrow_overlap, gensym("overlap"), A_FLOAT,0); + class_addmethod(burrow_class, (t_method)burrow_mute, gensym("mute"), A_FLOAT,0); + class_addmethod(burrow_class, (t_method)burrow_fftinfo, gensym("fftinfo"), A_CANT,0); + class_addmethod(burrow_class,(t_method)burrow_winfac,gensym("winfac"),A_FLOAT,0); + post("%s %s",OBJECT_NAME,FFTEASE_ANNOUNCEMENT); +} +#endif + +void burrow_free(t_burrow *x) +{ +#if MSP + dsp_free((t_pxobject *) x); +#endif + free(x->trigland); + free(x->bitshuffle); + free(x->Wanal); + free(x->Wsyn); + free(x->Hwin); + free(x->inputOne); + free(x->inputTwo); + free(x->bufferOne); + free(x->bufferTwo); + free(x->channelOne); + free(x->channelTwo); + free(x->output); + +} + + +void burrow_invert(t_burrow *x, t_floatarg toggle) +{ + x->invert = toggle; +} + +void burrow_mute(t_burrow *x, t_floatarg toggle) +{ + x->mute = toggle; +} + +void burrow_overlap(t_burrow *x, t_floatarg o) +{ + if(!power_of_two(o)){ + error("%f is not a power of two",o); + return; + } + x->overlap = o; + burrow_init(x,1); +} + +void burrow_winfac(t_burrow *x, t_floatarg f) +{ + if(!power_of_two(f)){ + error("%f is not a power of two",f); + return; + } + x->winfac = (int)f; + burrow_init(x,1); +} + +void burrow_fftinfo( t_burrow *x ) +{ + if( ! x->overlap ){ + post("zero overlap!"); + return; + } + post("%s: FFT size %d, hopsize %d, windowsize %d", OBJECT_NAME, x->N, x->N/x->overlap, x->Nw); +} + + + +/* diagnostic messages for Max */ + +void burrow_assist (t_burrow *x, void *b, long msg, long arg, char *dst) +{ + + if (msg == 1) { + + switch (arg) { + case 0: sprintf(dst,"(signal) Source Sound"); break; + case 1: sprintf(dst,"(signal) Burrow Filtering Sound"); break; + case 2: sprintf(dst,"(signal/float) Filter Threshold"); break; + case 3: sprintf(dst,"(signal/float) Filter Multiplier"); break; + } + } + + else { + if (msg == 2) + sprintf(dst,"(signal) Output"); + } +} + +void burrow_init(t_burrow *x, short initialized) +{ +int i; + x->D = x->vs; + x->N = x->D * x->overlap; + x->Nw = x->N * x->winfac; + limit_fftsize(&x->N,&x->Nw,OBJECT_NAME); + x->N2 = (x->N)>>1; + x->Nw2 = (x->Nw)>>1; + x->inCount = -(x->Nw); + x->mult = 1. / (float) x->N; + if(!initialized){ + x->mute = 0; + x->invert = 0; + x->inputOne = (float *) calloc(MAX_Nw, sizeof(float)); + x->inputTwo = (float *) calloc(MAX_Nw, sizeof(float)); + x->bufferOne = (float *) calloc(MAX_N, sizeof(float)); + x->bufferTwo = (float *) calloc(MAX_N, sizeof(float)); + x->channelOne = (float *) calloc((MAX_N+2), sizeof(float)); + x->channelTwo = (float *) calloc((MAX_N+2), sizeof(float)); + x->Wanal = (float *) calloc(MAX_Nw, sizeof(float)); + x->Wsyn = (float *) calloc(MAX_Nw, sizeof(float)); + x->Hwin = (float *) calloc(MAX_Nw, sizeof(float)); + x->output = (float *) calloc(MAX_Nw, sizeof(float)); + x->bitshuffle = (int *) calloc(MAX_N * 2, sizeof(int)); + x->trigland = (float *) calloc(MAX_N * 2, sizeof(float)); + } + memset((char *)x->inputOne,0,x->Nw * sizeof(float)); + memset((char *)x->inputTwo,0,x->Nw * sizeof(float)); + memset((char *)x->output,0,x->Nw * sizeof(float)); + memset((char *)x->bufferOne,0,x->N * sizeof(float)); + memset((char *)x->bufferTwo,0,x->N * sizeof(float)); + + makehanning( x->Hwin, x->Wanal, x->Wsyn, x->Nw, x->N, x->D, 0); + init_rdft( x->N, x->bitshuffle, x->trigland); +} + +void *burrow_new(t_symbol *s, int argc, t_atom *argv) +{ +#if MSP + t_burrow *x = (t_burrow *) newobject(burrow_class); + dsp_setup((t_pxobject *)x,4); + outlet_new((t_pxobject *)x, "signal"); +#endif +#if PD + t_burrow *x = (t_burrow *)pd_new(burrow_class); + /* add three additional signal inlets */ + inlet_new(&x->x_obj, &x->x_obj.ob_pd,gensym("signal"), gensym("signal")); + inlet_new(&x->x_obj, &x->x_obj.ob_pd,gensym("signal"), gensym("signal")); + inlet_new(&x->x_obj, &x->x_obj.ob_pd,gensym("signal"), gensym("signal")); + outlet_new(&x->x_obj, gensym("signal")); +#endif + +/* optional arguments: threshold, multiplier, overlap, winfac */ + + x->threshold = atom_getfloatarg(0,argc,argv); + x->multiplier = atom_getfloatarg(1,argc,argv); + x->overlap = atom_getfloatarg(2,argc,argv); + x->winfac = atom_getfloatarg(3,argc,argv); + + if(!power_of_two(x->overlap)){ + x->overlap = 4; + } + if(!power_of_two(x->winfac)){ + x->winfac = 1; + } + if(x->threshold > 1.0 || x->threshold < 0.0){ + x->threshold = 0; + } + if(x->multiplier > 1.0 || x->multiplier < 0.0){ + x->multiplier = .01; + } + + x->vs = sys_getblksize(); + x->R = sys_getsr(); + + burrow_init(x,0); + return(x); + +} + + +t_int *burrow_perform(t_int *w) +{ +/* get our inlets and outlets */ + + t_burrow *x = (t_burrow *) (w[1]); + t_float *inOne = (t_float *)(w[2]); + t_float *inTwo = (t_float *)(w[3]); + t_float *flt_threshold = (t_float *)(w[4]); + t_float *flt_multiplier = (t_float *)(w[5]); + t_float *out = (t_float *)(w[6]); + t_int n = w[7]; + + short *connected = x->connected; + + int + i,j, + inCount, + R, + N, + N2, + D, + Nw, + invert = 0, + even, odd, + *bitshuffle; + + float maxamp, + threshold = 1., + multiplier = 1., + mult, + a1, b1, + a2, b2, + *inputOne, + *inputTwo, + *bufferOne, + *bufferTwo, + *output, + *Wanal, + *Wsyn, + *channelOne, + *channelTwo, + *trigland; + +/* dereference structure */ + + inputOne = x->inputOne; + inputTwo = x->inputTwo; + bufferOne = x->bufferOne; + bufferTwo = x->bufferTwo; + inCount = x->inCount; + + R = x->R; + N = x->N; + N2 = x->N2; + D = x->D; + Nw = x->Nw; + Wanal = x->Wanal; + Wsyn = x->Wsyn; + output = x->output; + + channelOne = x->channelOne; + channelTwo = x->channelTwo; + bitshuffle = x->bitshuffle; + trigland = x->trigland; + multiplier = x->multiplier; + threshold = x->threshold; + mult = x->mult; + invert = x->invert; + + if(connected[2]){ + threshold = *flt_threshold; + } else { + threshold = x->threshold; + } + + if(connected[3]){ + multiplier = *flt_multiplier; + } else { + multiplier = x->multiplier; + } + +/* save some CPUs if muted */ + if(x->mute){ + while(n--) + *out++ = 0.0; + return (w+8); + } + +/* fill our retaining buffers */ + + inCount += D; + + for ( j = 0 ; j < Nw - D ; j++ ) { + inputOne[j] = inputOne[j+D]; + inputTwo[j] = inputTwo[j+D]; + } + + for ( j = Nw-D; j < Nw; j++ ) { + inputOne[j] = *inOne++; + inputTwo[j] = *inTwo++; + } + +/* apply hamming window and fold our window buffer into the fft buffer */ + + fold( inputOne, Wanal, Nw, bufferOne, N, inCount ); + fold( inputTwo, Wanal, Nw, bufferTwo, N, inCount ); + + +/* do an fft */ + + rdft( N, 1, bufferOne, bitshuffle, trigland ); + rdft( N, 1, bufferTwo, bitshuffle, trigland ); + +/* use redundant coding for speed, even though moving the invert variable + comparison outside of the for loop will give us only a minimal performance + increase (hypot and atan2 are the most intensive portions of this code). + consider adding a table lookup for atan2 instead. +*/ + + +if (invert) { + +/* convert to polar coordinates from complex values */ + + for ( i = 0; i <= N2; i++ ) { + + odd = ( even = i<<1 ) + 1; + + a1 = ( i == N2 ? *(bufferOne+1) : *(bufferOne+even) ); + b1 = ( i == 0 || i == N2 ? 0. : *(bufferOne+odd) ); + + a2 = ( i == N2 ? *(bufferTwo+1) : *(bufferTwo+even) ); + b2 = ( i == 0 || i == N2 ? 0. : *(bufferTwo+odd) ); + + *(channelOne+even) = hypot( a1, b1 ); + *(channelOne+odd) = -atan2( b1, a1 ); + + *(channelTwo+even) = hypot( a2, b2 ); + + /* use simple threshold from second signal to trigger filtering */ + + if ( *(channelTwo+even) < threshold ) + *(channelOne+even) *= multiplier; + +/* *(channelTwo+odd) = -atan2( b2, a2 ); */ + + } +} + +else { + +/* convert to polar coordinates from complex values */ + + for ( i = 0; i <= N2; i++ ) { + + odd = ( even = i<<1 ) + 1; + + a1 = ( i == N2 ? *(bufferOne+1) : *(bufferOne+even) ); + b1 = ( i == 0 || i == N2 ? 0. : *(bufferOne+odd) ); + + a2 = ( i == N2 ? *(bufferTwo+1) : *(bufferTwo+even) ); + b2 = ( i == 0 || i == N2 ? 0. : *(bufferTwo+odd) ); + + *(channelOne+even) = hypot( a1, b1 ); + *(channelOne+odd) = -atan2( b1, a1 ); + + *(channelTwo+even) = hypot( a2, b2 ); + + /* use simple threshold from second signal to trigger filtering */ + + if ( *(channelTwo+even) > threshold ) + *(channelOne+even) *= multiplier; + +/* *(channelTwo+odd) = -atan2( b2, a2 ); */ + + } +} + +/* convert back to complex form, read for the inverse fft */ + + for ( i = 0; i <= N2; i++ ) { + + odd = ( even = i<<1 ) + 1; + + *(bufferOne+even) = *(channelOne+even) * cos( *(channelOne+odd) ); + + if ( i != N2 ) + *(bufferOne+odd) = -(*(channelOne+even)) * sin( *(channelOne+odd) ); + } + + +/* do an inverse fft */ + + rdft( N, -1, bufferOne, bitshuffle, trigland ); + +/* dewindow our result */ + + overlapadd( bufferOne, N, Wsyn, output, Nw, inCount); + +/* set our output and adjust our retaining output buffer */ + + for ( j = 0; j < D; j++ ) + *out++ = output[j] * mult; + + for ( j = 0; j < Nw - D; j++ ) + output[j] = output[j+D]; + + for ( j = Nw - D; j < Nw; j++ ) + output[j] = 0.; + + +/* restore state variables */ + + x->inCount = inCount % Nw; + return (w+8); +} + +void burrow_dsp(t_burrow *x, t_signal **sp, short *count) +{ + long i; + #if MSP + for( i = 0; i < 4; i++ ){ + x->connected[i] = count[i]; + } + #endif + /* signal is always connected in Pd */ + #if PD + for( i = 0; i < 4; i++ ){ + x->connected[i] = 1; + } + #endif + /* reinitialize if vector size or sampling rate has been changed */ + if(x->vs != sp[0]->s_n || x->R != sp[0]->s_sr){ + x->vs = sp[0]->s_n; + x->R = sp[0]->s_sr; + burrow_init(x,1); + } + dsp_add(burrow_perform, 7, x, + sp[0]->s_vec, + sp[1]->s_vec, + sp[2]->s_vec, + sp[3]->s_vec, + sp[4]->s_vec, + sp[0]->s_n); +} + -- cgit v1.2.1