#include "MSPd.h" #include "fftease.h" #if MSP void *bthresher_class; #endif #if PD static t_class *bthresher_class; #endif #define OBJECT_NAME "bthresher~" typedef struct _bthresher { #if MSP t_pxobject x_obj; #endif #if PD t_object x_obj; float x_f; #endif int R; int N; int N2; int Nw; int Nw2; int D; int i; int in_count; float *Wanal; float *Wsyn; float *input; float *Hwin; float *buffer; float *channel; float *output; /* bthresher vars */ float *move_threshold; float *composite_frame ; int *frames_left; int max_hold_frames; float max_hold_time; int first_frame; float *damping_factor ; float thresh_scalar; float damp_scalar; short thresh_connected; short damping_connected; void *list_outlet; void *misc_outlet; t_atom *list_data; // for convert float *c_lastphase_in; float *c_lastphase_out; float c_fundamental; float c_factor_in; float c_factor_out; // for fast fft float mult; float *trigland; int *bitshuffle; short mute; short bypass; float init_thresh; float init_damping; int overlap; int winfac; float tadv; short inf_hold; } t_bthresher; void *bthresher_new(t_symbol *s, int argc, t_atom *argv); t_int *offset_perform(t_int *w); t_int *bthresher_perform(t_int *w); void bthresher_dsp(t_bthresher *x, t_signal **sp, short *count); void bthresher_assist(t_bthresher *x, void *b, long m, long a, char *s); void bthresher_float(t_bthresher *x, double f); void bthresher_mute(t_bthresher *x, t_floatarg f); void bthresher_bypass(t_bthresher *x, t_floatarg f); void bthresher_overlap(t_bthresher *x, t_floatarg f); void bthresher_winfac(t_bthresher *x, t_floatarg f); void bthresher_fftinfo(t_bthresher *x); void bthresher_free(t_bthresher *x); void bthresher_bin(t_bthresher *x, t_floatarg bin_num, t_floatarg threshold, t_floatarg damper); void bthresher_rdamper(t_bthresher *x, t_floatarg min, t_floatarg max ); void bthresher_rthreshold(t_bthresher *x, t_floatarg min, t_floatarg max); void bthresher_dump(t_bthresher *x ); void bthresher_list (t_bthresher *x, t_symbol *msg, short argc, t_atom *argv); void bthresher_init(t_bthresher *x, short initialized); float bthresher_boundrand(float min, float max); void bthresher_allthresh(t_bthresher *x, t_floatarg f); void bthresher_alldamp(t_bthresher *x, t_floatarg f); void bthresher_inf_hold(t_bthresher *x, t_floatarg f); void bthresher_max_hold(t_bthresher *x, t_floatarg f); #if MSP void main(void) { setup((t_messlist **)&bthresher_class, (method)bthresher_new, (method)bthresher_free, (short)sizeof(t_bthresher), 0, A_GIMME, 0); addmess((method)bthresher_dsp, "dsp", A_CANT, 0); addmess((method)bthresher_assist,"assist",A_CANT,0); addmess((method)bthresher_mute,"mute",A_FLOAT,0); addmess((method)bthresher_bypass,"bypass",A_FLOAT,0); addmess((method)bthresher_overlap,"overlap",A_FLOAT,0); addmess((method)bthresher_winfac,"winfac",A_FLOAT,0); addmess((method)bthresher_fftinfo,"fftinfo",0); addmess ((method)bthresher_bin, "bin", A_FLOAT, A_FLOAT, A_FLOAT, 0); addmess ((method)bthresher_rdamper, "rdamper", A_DEFFLOAT, A_DEFFLOAT, 0); addmess ((method)bthresher_rthreshold, "rthreshold", A_DEFFLOAT, A_DEFFLOAT, 0); addmess((method)bthresher_dump,"dump",0); addmess((method)bthresher_list,"list",A_GIMME,0); addmess((method)bthresher_alldamp,"alldamp",A_FLOAT,0); addmess((method)bthresher_allthresh,"allthresh",A_FLOAT,0); addmess((method)bthresher_inf_hold,"inf_hold",A_FLOAT,0); addmess((method)bthresher_max_hold,"max_hold",A_FLOAT,0); addfloat((method)bthresher_float); dsp_initclass(); post("%s %s",OBJECT_NAME,FFTEASE_ANNOUNCEMENT); } #endif #if PD void bthresher_tilde_setup(void){ bthresher_class = class_new(gensym("bthresher~"), (t_newmethod)bthresher_new, (t_method)bthresher_free ,sizeof(t_bthresher), 0,A_GIMME,0); CLASS_MAINSIGNALIN(bthresher_class, t_bthresher, x_f); class_addmethod(bthresher_class,(t_method)bthresher_dsp,gensym("dsp"),0); class_addmethod(bthresher_class,(t_method)bthresher_mute,gensym("mute"),A_FLOAT,0); class_addmethod(bthresher_class,(t_method)bthresher_bypass,gensym("bypass"),A_FLOAT,0); class_addmethod(bthresher_class,(t_method)bthresher_overlap,gensym("overlap"),A_FLOAT,0); class_addmethod(bthresher_class,(t_method)bthresher_winfac,gensym("winfac"),A_FLOAT,0); class_addmethod(bthresher_class,(t_method)bthresher_fftinfo,gensym("fftinfo"),0); class_addmethod(bthresher_class,(t_method)bthresher_rdamper,gensym("rdamper"),A_FLOAT,A_FLOAT,0); class_addmethod(bthresher_class,(t_method)bthresher_rthreshold,gensym("rthreshold"),A_FLOAT,A_FLOAT,0); class_addmethod(bthresher_class,(t_method)bthresher_dump,gensym("dump"),0); class_addmethod(bthresher_class,(t_method)bthresher_list,gensym("list"),A_GIMME,0); class_addmethod(bthresher_class,(t_method)bthresher_alldamp,gensym("alldamp"),A_FLOAT,0); class_addmethod(bthresher_class,(t_method)bthresher_allthresh,gensym("allthresh"),A_FLOAT,0); class_addmethod(bthresher_class,(t_method)bthresher_inf_hold,gensym("inf_hold"),A_FLOAT,0); class_addmethod(bthresher_class,(t_method)bthresher_max_hold,gensym("max_hold"),A_FLOAT,0); class_addmethod(bthresher_class,(t_method)bthresher_bin,gensym("bin"),A_FLOAT,A_FLOAT,A_FLOAT,0); post("%s %s",OBJECT_NAME,FFTEASE_ANNOUNCEMENT); } #endif void bthresher_fftinfo( t_bthresher *x ) { if( ! x->overlap ){ post("zero overlap!"); return; } post("%s: FFT size %d, hopsize %d, windowsize %d", OBJECT_NAME, x->N, x->N/x->overlap, x->Nw); } void bthresher_free( t_bthresher *x ){ #if MSP dsp_free( (t_pxobject *) x); #endif freebytes(x->Wanal,0); freebytes(x->Wsyn,0); freebytes(x->Hwin,0); freebytes(x->buffer,0); freebytes(x->channel,0); freebytes(x->input,0); freebytes(x->output,0); freebytes(x->trigland,0); freebytes(x->bitshuffle,0); /* full phase vocoder */ freebytes(x->c_lastphase_in,0); freebytes(x->c_lastphase_out,0); /* external-specific memory */ freebytes(x->composite_frame,0); freebytes(x->frames_left,0); freebytes(x->move_threshold,0); freebytes(x->damping_factor,0); freebytes(x->list_data,0); } void bthresher_max_hold(t_bthresher *x, t_floatarg f) { if(f<=0) return; x->max_hold_time = f * .001; x->max_hold_frames = x->max_hold_time / x->tadv; } void bthresher_inf_hold(t_bthresher *x, t_floatarg f) { x->inf_hold = (int)f; } void bthresher_allthresh(t_bthresher *x, t_floatarg f) { int i; //post("thresh %f",f); for(i=0;iN2+1;i++) x->move_threshold[i] = f; } void bthresher_alldamp(t_bthresher *x, t_floatarg f) { int i; //post("damp %f",f); for(i=0;iN2+1;i++) x->damping_factor[i] = f; } void bthresher_overlap(t_bthresher *x, t_floatarg f) { int i = (int) f; if(!fftease_power_of_two(i)){ error("%f is not a power of two",f); return; } x->overlap = i; bthresher_init(x,1); } void bthresher_winfac(t_bthresher *x, t_floatarg f) { int i = (int)f; if(!fftease_power_of_two(i)){ error("%f is not a power of two",f); return; } x->winfac = i; bthresher_init(x,2); } void bthresher_mute(t_bthresher *x, t_floatarg f){ x->mute = f; } void bthresher_bypass(t_bthresher *x, t_floatarg f){ x->bypass = f; } void bthresher_assist (t_bthresher *x, void *b, long msg, long arg, char *dst) { if (msg==1) { switch (arg) { case 0:sprintf(dst,"(signal) Input");break; case 1:sprintf(dst,"(signal/float) Threshold Scalar");break; case 2:sprintf(dst,"(signal/float) Damping Factor Scalar");break; } } else if (msg==2) { switch (arg) { case 0:sprintf(dst,"(signal) Output");break; case 1:sprintf(dst,"(list) Current State");break; } } } void bthresher_list (t_bthresher *x, t_symbol *msg, short argc, t_atom *argv) { int i, bin, idiv; float fdiv; float *damping_factor = x->damping_factor; float *move_threshold = x->move_threshold; // post("reading %d elements", argc); idiv = fdiv = (float) argc / 3.0 ; if( fdiv - idiv > 0.0 ) { post("list must be in triplets"); return; } /* for( i = 0; i < x->N2+1; i++) { move_threshold[i] = 0.0 ; }*/ for( i = 0; i < argc; i += 3 ) { bin = atom_getintarg(i,argc,argv); damping_factor[bin] = atom_getfloatarg(i+1,argc,argv); move_threshold[bin] = atom_getfloatarg(i+2,argc,argv); /* bin = argv[i].a_w.w_long ; damping_factor[bin] = argv[i + 1].a_w.w_float; move_threshold[bin] = argv[i + 2].a_w.w_float;*/ } } void bthresher_dump (t_bthresher *x) { t_atom *list_data = x->list_data; float *damping_factor = x->damping_factor; float *move_threshold = x->move_threshold; int i,j, count; #if MSP for( i = 0, j = 0; i < x->N2 * 3 ; i += 3, j++ ) { SETLONG(list_data+i,j); SETFLOAT(list_data+(i+1),damping_factor[j]); SETFLOAT(list_data+(i+2),move_threshold[j]); } #endif #if PD for( i = 0, j = 0; i < x->N2 * 3 ; i += 3, j++ ) { SETFLOAT(list_data+i,(float)j); SETFLOAT(list_data+(i+1),damping_factor[j]); SETFLOAT(list_data+(i+2),move_threshold[j]); } #endif count = x->N2 * 3; outlet_list(x->list_outlet,0,count,list_data); return; } void *bthresher_new(t_symbol *s, int argc, t_atom *argv) { #if MSP t_bthresher *x = (t_bthresher *)newobject(bthresher_class); x->list_outlet = listout((t_pxobject *)x); dsp_setup((t_pxobject *)x,3); outlet_new((t_pxobject *)x, "signal"); #endif #if PD t_bthresher *x = (t_bthresher *)pd_new(bthresher_class); inlet_new(&x->x_obj, &x->x_obj.ob_pd, gensym("signal"), gensym("signal")); inlet_new(&x->x_obj, &x->x_obj.ob_pd, gensym("signal"), gensym("signal")); outlet_new(&x->x_obj, gensym("signal")); x->list_outlet = outlet_new(&x->x_obj,gensym("list")); #endif x->D = sys_getblksize(); x->R = sys_getsr(); x->init_thresh = atom_getfloatarg(0,argc,argv); x->init_damping = atom_getfloatarg(1,argc,argv); x->overlap = atom_getintarg(2,argc,argv); x->winfac = atom_getintarg(3,argc,argv); bthresher_init(x,0); return (x); } void bthresher_init(t_bthresher *x, short initialized) { int i; if(!x->D) x->D = 256; if(!x->R) x->R = 44100; if(!fftease_power_of_two(x->overlap)) x->overlap = 4; if(!fftease_power_of_two(x->winfac)) x->winfac = 1; x->N = x->D * x->overlap; x->Nw = x->N * x->winfac; limit_fftsize(&x->N,&x->Nw,OBJECT_NAME); x->mult = 1. / (float) x->N; x->N2 = (x->N)>>1; x->Nw2 = (x->Nw)>>1; x->in_count = -(x->Nw); x->c_fundamental = (float) x->R/((x->N2)<<1 ); x->c_factor_in = (float) x->R/((float)x->D * TWOPI); x->c_factor_out = TWOPI * (float) x->D / (float) x->R; if(!initialized){ x->first_frame = 1; x->max_hold_time = 60.0 ; x->thresh_connected = 0; x->damping_connected = 0; x->thresh_scalar = 1; x->damp_scalar = 1; x->mute = 0; x->bypass = 0; x->inf_hold = 0; x->Wanal = (float *) getbytes((MAX_Nw) * sizeof(float)); x->Wsyn = (float *) getbytes((MAX_Nw) * sizeof(float)); x->Hwin = (float *) getbytes((MAX_Nw) * sizeof(float)); x->input = (float *) getbytes((MAX_Nw) * sizeof(float)); x->buffer = (float *) getbytes((MAX_N) * sizeof(float)); x->channel = (float *) getbytes(((MAX_N+2)) * sizeof(float)); x->output = (float *) getbytes((MAX_Nw) * sizeof(float)); x->bitshuffle = (int *) getbytes((MAX_N * 2) * sizeof(int)); x->trigland = (float *) getbytes((MAX_N * 2) * sizeof(float)); x->c_lastphase_in = (float *) getbytes((MAX_N2+1)* sizeof(float)); x->c_lastphase_out = (float *) getbytes((MAX_N2+1)* sizeof(float)); x->composite_frame = (float *) getbytes( (MAX_N+2)* sizeof(float)); x->frames_left = (int *) getbytes((MAX_N+2)* sizeof(int)); // TRIPLETS OF bin# damp_factor threshold x->list_data = (t_atom *) getbytes((MAX_N2 + 1) * 3 * sizeof(t_atom)); x->move_threshold = (float *) getbytes((MAX_N2+1)* sizeof(float)); x->damping_factor = (float *) getbytes((MAX_N2+1)* sizeof(float)); } if(initialized == 0 || initialized == 1){ for(i = 0; i < x->N2+1; i++) { x->move_threshold[i] = x->init_thresh; x->damping_factor[i] = x->init_damping; } } memset((char *)x->input,0,x->Nw * sizeof(float)); memset((char *)x->output,0,x->Nw * sizeof(float)); memset((char *)x->buffer,0,x->N * sizeof(float)); memset((char *)x->c_lastphase_in,0,(x->N2+1) * sizeof(float)); memset((char *)x->c_lastphase_out,0,(x->N2+1) * sizeof(float)); x->tadv = (float) x->D / (float) x->R; x->max_hold_frames = x->max_hold_time / x->tadv; init_rdft(x->N, x->bitshuffle, x->trigland); makehanning(x->Hwin, x->Wanal, x->Wsyn, x->Nw, x->N, x->D, 0); } void bthresher_rdamper(t_bthresher *x, t_floatarg min, t_floatarg max) { int i; for( i = 0; i < x->N2; i++ ) { x->damping_factor[i] = bthresher_boundrand(min, max); } } void bthresher_rthreshold( t_bthresher *x, t_floatarg min, t_floatarg max ) { int i; for( i = 0; i < x->N2; i++ ) { x->move_threshold[i] = bthresher_boundrand(min, max); } } void bthresher_bin(t_bthresher *x, t_floatarg bin_num, t_floatarg damper, t_floatarg threshold) { int bn = (int) bin_num; if( bn >= 0 && bn < x->N2 ){ // post("setting %d to %f %f",bn,threshold,damper); x->move_threshold[bn] = threshold; x->damping_factor[bn] = damper; } else { post("bthresher~: %d is out of range", bn); } } t_int *bthresher_perform(t_int *w) { float sample, outsamp ; int i, j, on; t_bthresher *x = (t_bthresher *) (w[1]); float *in = (t_float *)(w[2]); float *inthresh = (t_float *)(w[3]); float *damping = (t_float *)(w[4]); float *out = (t_float *)(w[5]); t_int n = w[6]; int *bitshuffle = x->bitshuffle; float *trigland = x->trigland; float mult = x->mult; int in_count = x->in_count; int R = x->R; int N = x->N; int N2 = x->N2; int D = x->D; int Nw = x->Nw; float *Wanal = x->Wanal; float *Wsyn = x->Wsyn; float *damping_factor = x->damping_factor; float *move_threshold = x->move_threshold; float *input = x->input; float *output = x->output; float *buffer = x->buffer; float *channel = x->channel; float *composite_frame = x->composite_frame; int max_hold_frames = x->max_hold_frames; int *frames_left = x->frames_left; float thresh_scalar = x->thresh_scalar; float damp_scalar = x->damp_scalar; short inf_hold = x->inf_hold; if( x->mute ) { for( j = 0; j < D; j++) { *out++ = 0.0 ; } } else if ( x->bypass ) { for( j = 0; j < D; j++) { *out++ = *in++ * 0.5; } } else { #if MSP if( x->thresh_connected ) { thresh_scalar = *inthresh++; } if( x->damping_connected ) { damp_scalar = *damping++; } #endif #if PD thresh_scalar = *inthresh++; damp_scalar = *damping++; #endif in_count += D; for ( j = 0 ; j < Nw - D ; j++ ) input[j] = input[j+D]; for ( j = Nw-D; j < Nw; j++ ) { input[j] = *in++; } fold( input, Wanal, Nw, buffer, N, in_count ); rdft( N, 1, buffer, bitshuffle, trigland ); convert( buffer, channel, N2, x->c_lastphase_in, x->c_fundamental, x->c_factor_in ); if( x->first_frame ){ for ( i = 0; i < N+2; i++ ){ composite_frame[i] = channel[i]; x->frames_left[i] = max_hold_frames; } x->first_frame = 0; } else { if( thresh_scalar < .999 || thresh_scalar > 1.001 || damp_scalar < .999 || damp_scalar > 1.001 ) { for(i = 0, j = 0; i < N+2; i += 2, j++ ){ if( fabs( composite_frame[i] - channel[i] ) > move_threshold[j] * thresh_scalar|| frames_left[j] <= 0 ){ composite_frame[i] = channel[i]; composite_frame[i+1] = channel[i+1]; frames_left[j] = max_hold_frames; } else { if(!inf_hold){ --(frames_left[j]); } composite_frame[i] *= damping_factor[j] * damp_scalar; } } } else { for( i = 0, j = 0; i < N+2; i += 2, j++ ){ if( fabs( composite_frame[i] - channel[i] ) > move_threshold[j] || frames_left[j] <= 0 ){ composite_frame[i] = channel[i]; composite_frame[i+1] = channel[i+1]; frames_left[j] = max_hold_frames; } else { if(!inf_hold){ --(frames_left[j]); } composite_frame[i] *= damping_factor[j]; } } } } unconvert(x->composite_frame, buffer, N2, x->c_lastphase_out, x->c_fundamental, x->c_factor_out); rdft(N, -1, buffer, bitshuffle, trigland); overlapadd(buffer, N, Wsyn, output, Nw, in_count); for ( j = 0; j < D; j++ ) *out++ = output[j] * mult; for ( j = 0; j < Nw - D; j++ ) output[j] = output[j+D]; for ( j = Nw - D; j < Nw; j++ ) output[j] = 0.; } x->in_count = in_count % Nw; x->thresh_scalar = thresh_scalar; x->damp_scalar = damp_scalar; return (w+7); } #if MSP void bthresher_float(t_bthresher *x, double f) // Look at floats at inlets { int inlet = x->x_obj.z_in; int i; if (inlet == 1) { x->thresh_scalar = f; } else if (inlet == 2) { x->damp_scalar = f; } } #endif void bthresher_dsp(t_bthresher *x, t_signal **sp, short *count) { #if MSP x->thresh_connected = count[1]; x->damping_connected = count[2]; #endif if(sp[0]->s_n != x->D || x->R != sp[0]->s_sr){ x->D = sp[0]->s_n; x->R = sp[0]->s_sr; bthresher_init(x,1); } dsp_add(bthresher_perform, 6, x, sp[0]->s_vec, sp[1]->s_vec, sp[2]->s_vec, sp[3]->s_vec, sp[0]->s_n); } float bthresher_boundrand( float min, float max) { float frand; frand = (float) (rand() % 32768)/ 32768.0; return (min + frand * (max-min) ); }