#include "MSPd.h" #include "fftease.h" #if MSP void *burrow_class; #endif #if PD static t_class *burrow_class; #endif #define OBJECT_NAME "burrow~" /* after adding fixes, window factors > 1 are defective. Is there a remaining bug, or is this a problem for FFT-only processors? */ /* A few changes: Threshold and Multiplier now have their own inlets, which accept (signal/float). The input is now linear, rather than in dB. Reasons for this: 1) Linear input is the Max/MSP convention 2) It is easy to convert from linear to dB in Max 3) (My favorite) This cuts down on programmer overhead. */ typedef struct _burrow { #if MSP t_pxobject x_obj; #endif #if PD t_object x_obj; float x_f; #endif int R; int N; int N2; int Nw; int Nw2; int D; int i; int inCount; int invert; int *bitshuffle; float threshold; float multiplier; float mult; float *Wanal; float *Wsyn; float *inputOne; float *inputTwo; float *Hwin; float *bufferOne; float *bufferTwo; float *channelOne; float *channelTwo; float *output; float *trigland; short connected[8]; short mute; int overlap;//overlap factor int winfac;//window factor int vs;//vector size } t_burrow; /* msp function prototypes */ void *burrow_new(t_symbol *s, int argc, t_atom *argv); t_int *offset_perform(t_int *w); t_int *burrow_perform(t_int *w); void burrow_dsp(t_burrow *x, t_signal **sp, short *count); void burrow_assist(t_burrow *x, void *b, long m, long a, char *s); void burrow_float(t_burrow *x, t_floatarg myFloat); void burrow_init(t_burrow *x, short initialized); void burrow_free(t_burrow *x); void burrow_invert(t_burrow *x, t_floatarg toggle); void burrow_mute(t_burrow *x, t_floatarg toggle); void burrow_fftinfo(t_burrow *x); void burrow_tilde_setup(void); void burrow_overlap(t_burrow *x, t_floatarg o); void burrow_winfac(t_burrow *x, t_floatarg f); #if MSP void main(void) { setup((t_messlist **)&burrow_class,(method) burrow_new, (method)burrow_free, (short) sizeof(t_burrow),0, A_GIMME, 0); addmess((method)burrow_dsp, "dsp", A_CANT, 0); addmess((method)burrow_assist,"assist",A_CANT,0); addmess((method)burrow_invert,"invert", A_FLOAT, 0); addmess((method)burrow_overlap,"overlap", A_FLOAT, 0); addmess((method)burrow_mute,"mute", A_FLOAT, 0); addmess((method)burrow_winfac,"winfac",A_FLOAT,0); addmess((method)burrow_fftinfo,"fftinfo", 0); addfloat((method)burrow_float); dsp_initclass(); post("%s %s",OBJECT_NAME,FFTEASE_ANNOUNCEMENT); } /* float input handling routines (MSP only) */ void burrow_float(t_burrow *x, t_floatarg myFloat) { int inlet = ((t_pxobject*)x)->z_in; if ( inlet == 2 ) // added two outlets so position is moved over x->threshold = myFloat; if ( inlet == 3 ) x->multiplier = myFloat; } #endif #if PD void burrow_tilde_setup(void) { burrow_class = class_new(gensym("burrow~"), (t_newmethod)burrow_new, (t_method)burrow_free ,sizeof(t_burrow), 0,A_GIMME,0); CLASS_MAINSIGNALIN(burrow_class, t_burrow, x_f); class_addmethod(burrow_class, (t_method)burrow_dsp, gensym("dsp"), 0); class_addmethod(burrow_class, (t_method)burrow_assist, gensym("assist"), 0); class_addmethod(burrow_class, (t_method)burrow_invert, gensym("invert"), A_FLOAT,0); class_addmethod(burrow_class, (t_method)burrow_overlap, gensym("overlap"), A_FLOAT,0); class_addmethod(burrow_class, (t_method)burrow_mute, gensym("mute"), A_FLOAT,0); class_addmethod(burrow_class, (t_method)burrow_fftinfo, gensym("fftinfo"), A_CANT,0); class_addmethod(burrow_class,(t_method)burrow_winfac,gensym("winfac"),A_FLOAT,0); post("%s %s",OBJECT_NAME,FFTEASE_ANNOUNCEMENT); } #endif void burrow_free(t_burrow *x) { #if MSP dsp_free((t_pxobject *) x); #endif free(x->trigland); free(x->bitshuffle); free(x->Wanal); free(x->Wsyn); free(x->Hwin); free(x->inputOne); free(x->inputTwo); free(x->bufferOne); free(x->bufferTwo); free(x->channelOne); free(x->channelTwo); free(x->output); } void burrow_invert(t_burrow *x, t_floatarg toggle) { x->invert = toggle; } void burrow_mute(t_burrow *x, t_floatarg toggle) { x->mute = toggle; } void burrow_overlap(t_burrow *x, t_floatarg o) { if(!fftease_power_of_two(o)){ error("%f is not a power of two",o); return; } x->overlap = o; burrow_init(x,1); } void burrow_winfac(t_burrow *x, t_floatarg f) { if(!fftease_power_of_two(f)){ error("%f is not a power of two",f); return; } x->winfac = (int)f; burrow_init(x,1); } void burrow_fftinfo( t_burrow *x ) { if( ! x->overlap ){ post("zero overlap!"); return; } post("%s: FFT size %d, hopsize %d, windowsize %d", OBJECT_NAME, x->N, x->N/x->overlap, x->Nw); } /* diagnostic messages for Max */ void burrow_assist (t_burrow *x, void *b, long msg, long arg, char *dst) { if (msg == 1) { switch (arg) { case 0: sprintf(dst,"(signal) Source Sound"); break; case 1: sprintf(dst,"(signal) Burrow Filtering Sound"); break; case 2: sprintf(dst,"(signal/float) Filter Threshold"); break; case 3: sprintf(dst,"(signal/float) Filter Multiplier"); break; } } else { if (msg == 2) sprintf(dst,"(signal) Output"); } } void burrow_init(t_burrow *x, short initialized) { int i; x->D = x->vs; x->N = x->D * x->overlap; x->Nw = x->N * x->winfac; limit_fftsize(&x->N,&x->Nw,OBJECT_NAME); x->N2 = (x->N)>>1; x->Nw2 = (x->Nw)>>1; x->inCount = -(x->Nw); x->mult = 1. / (float) x->N; if(!initialized){ x->mute = 0; x->invert = 0; x->inputOne = (float *) calloc(MAX_Nw, sizeof(float)); x->inputTwo = (float *) calloc(MAX_Nw, sizeof(float)); x->bufferOne = (float *) calloc(MAX_N, sizeof(float)); x->bufferTwo = (float *) calloc(MAX_N, sizeof(float)); x->channelOne = (float *) calloc((MAX_N+2), sizeof(float)); x->channelTwo = (float *) calloc((MAX_N+2), sizeof(float)); x->Wanal = (float *) calloc(MAX_Nw, sizeof(float)); x->Wsyn = (float *) calloc(MAX_Nw, sizeof(float)); x->Hwin = (float *) calloc(MAX_Nw, sizeof(float)); x->output = (float *) calloc(MAX_Nw, sizeof(float)); x->bitshuffle = (int *) calloc(MAX_N * 2, sizeof(int)); x->trigland = (float *) calloc(MAX_N * 2, sizeof(float)); } memset((char *)x->inputOne,0,x->Nw * sizeof(float)); memset((char *)x->inputTwo,0,x->Nw * sizeof(float)); memset((char *)x->output,0,x->Nw * sizeof(float)); memset((char *)x->bufferOne,0,x->N * sizeof(float)); memset((char *)x->bufferTwo,0,x->N * sizeof(float)); makehanning( x->Hwin, x->Wanal, x->Wsyn, x->Nw, x->N, x->D, 0); init_rdft( x->N, x->bitshuffle, x->trigland); } void *burrow_new(t_symbol *s, int argc, t_atom *argv) { #if MSP t_burrow *x = (t_burrow *) newobject(burrow_class); dsp_setup((t_pxobject *)x,4); outlet_new((t_pxobject *)x, "signal"); #endif #if PD t_burrow *x = (t_burrow *)pd_new(burrow_class); /* add three additional signal inlets */ inlet_new(&x->x_obj, &x->x_obj.ob_pd,gensym("signal"), gensym("signal")); inlet_new(&x->x_obj, &x->x_obj.ob_pd,gensym("signal"), gensym("signal")); inlet_new(&x->x_obj, &x->x_obj.ob_pd,gensym("signal"), gensym("signal")); outlet_new(&x->x_obj, gensym("signal")); #endif /* optional arguments: threshold, multiplier, overlap, winfac */ x->threshold = atom_getfloatarg(0,argc,argv); x->multiplier = atom_getfloatarg(1,argc,argv); x->overlap = atom_getfloatarg(2,argc,argv); x->winfac = atom_getfloatarg(3,argc,argv); if(!fftease_power_of_two(x->overlap)){ x->overlap = 4; } if(!fftease_power_of_two(x->winfac)){ x->winfac = 1; } if(x->threshold > 1.0 || x->threshold < 0.0){ x->threshold = 0; } if(x->multiplier > 1.0 || x->multiplier < 0.0){ x->multiplier = .01; } x->vs = sys_getblksize(); x->R = sys_getsr(); burrow_init(x,0); return(x); } t_int *burrow_perform(t_int *w) { /* get our inlets and outlets */ t_burrow *x = (t_burrow *) (w[1]); t_float *inOne = (t_float *)(w[2]); t_float *inTwo = (t_float *)(w[3]); t_float *flt_threshold = (t_float *)(w[4]); t_float *flt_multiplier = (t_float *)(w[5]); t_float *out = (t_float *)(w[6]); t_int n = w[7]; short *connected = x->connected; int i,j, inCount, R, N, N2, D, Nw, invert = 0, even, odd, *bitshuffle; float maxamp, threshold = 1., multiplier = 1., mult, a1, b1, a2, b2, *inputOne, *inputTwo, *bufferOne, *bufferTwo, *output, *Wanal, *Wsyn, *channelOne, *channelTwo, *trigland; /* dereference structure */ inputOne = x->inputOne; inputTwo = x->inputTwo; bufferOne = x->bufferOne; bufferTwo = x->bufferTwo; inCount = x->inCount; R = x->R; N = x->N; N2 = x->N2; D = x->D; Nw = x->Nw; Wanal = x->Wanal; Wsyn = x->Wsyn; output = x->output; channelOne = x->channelOne; channelTwo = x->channelTwo; bitshuffle = x->bitshuffle; trigland = x->trigland; multiplier = x->multiplier; threshold = x->threshold; mult = x->mult; invert = x->invert; if(connected[2]){ threshold = *flt_threshold; } else { threshold = x->threshold; } if(connected[3]){ multiplier = *flt_multiplier; } else { multiplier = x->multiplier; } /* save some CPUs if muted */ if(x->mute){ while(n--) *out++ = 0.0; return (w+8); } /* fill our retaining buffers */ inCount += D; for ( j = 0 ; j < Nw - D ; j++ ) { inputOne[j] = inputOne[j+D]; inputTwo[j] = inputTwo[j+D]; } for ( j = Nw-D; j < Nw; j++ ) { inputOne[j] = *inOne++; inputTwo[j] = *inTwo++; } /* apply hamming window and fold our window buffer into the fft buffer */ fold( inputOne, Wanal, Nw, bufferOne, N, inCount ); fold( inputTwo, Wanal, Nw, bufferTwo, N, inCount ); /* do an fft */ rdft( N, 1, bufferOne, bitshuffle, trigland ); rdft( N, 1, bufferTwo, bitshuffle, trigland ); /* use redundant coding for speed, even though moving the invert variable comparison outside of the for loop will give us only a minimal performance increase (hypot and atan2 are the most intensive portions of this code). consider adding a table lookup for atan2 instead. */ if (invert) { /* convert to polar coordinates from complex values */ for ( i = 0; i <= N2; i++ ) { odd = ( even = i<<1 ) + 1; a1 = ( i == N2 ? *(bufferOne+1) : *(bufferOne+even) ); b1 = ( i == 0 || i == N2 ? 0. : *(bufferOne+odd) ); a2 = ( i == N2 ? *(bufferTwo+1) : *(bufferTwo+even) ); b2 = ( i == 0 || i == N2 ? 0. : *(bufferTwo+odd) ); *(channelOne+even) = hypot( a1, b1 ); *(channelOne+odd) = -atan2( b1, a1 ); *(channelTwo+even) = hypot( a2, b2 ); /* use simple threshold from second signal to trigger filtering */ if ( *(channelTwo+even) < threshold ) *(channelOne+even) *= multiplier; /* *(channelTwo+odd) = -atan2( b2, a2 ); */ } } else { /* convert to polar coordinates from complex values */ for ( i = 0; i <= N2; i++ ) { odd = ( even = i<<1 ) + 1; a1 = ( i == N2 ? *(bufferOne+1) : *(bufferOne+even) ); b1 = ( i == 0 || i == N2 ? 0. : *(bufferOne+odd) ); a2 = ( i == N2 ? *(bufferTwo+1) : *(bufferTwo+even) ); b2 = ( i == 0 || i == N2 ? 0. : *(bufferTwo+odd) ); *(channelOne+even) = hypot( a1, b1 ); *(channelOne+odd) = -atan2( b1, a1 ); *(channelTwo+even) = hypot( a2, b2 ); /* use simple threshold from second signal to trigger filtering */ if ( *(channelTwo+even) > threshold ) *(channelOne+even) *= multiplier; /* *(channelTwo+odd) = -atan2( b2, a2 ); */ } } /* convert back to complex form, read for the inverse fft */ for ( i = 0; i <= N2; i++ ) { odd = ( even = i<<1 ) + 1; *(bufferOne+even) = *(channelOne+even) * cos( *(channelOne+odd) ); if ( i != N2 ) *(bufferOne+odd) = -(*(channelOne+even)) * sin( *(channelOne+odd) ); } /* do an inverse fft */ rdft( N, -1, bufferOne, bitshuffle, trigland ); /* dewindow our result */ overlapadd( bufferOne, N, Wsyn, output, Nw, inCount); /* set our output and adjust our retaining output buffer */ for ( j = 0; j < D; j++ ) *out++ = output[j] * mult; for ( j = 0; j < Nw - D; j++ ) output[j] = output[j+D]; for ( j = Nw - D; j < Nw; j++ ) output[j] = 0.; /* restore state variables */ x->inCount = inCount % Nw; return (w+8); } void burrow_dsp(t_burrow *x, t_signal **sp, short *count) { long i; #if MSP for( i = 0; i < 4; i++ ){ x->connected[i] = count[i]; } #endif /* signal is always connected in Pd */ #if PD for( i = 0; i < 4; i++ ){ x->connected[i] = 1; } #endif /* reinitialize if vector size or sampling rate has been changed */ if(x->vs != sp[0]->s_n || x->R != sp[0]->s_sr){ x->vs = sp[0]->s_n; x->R = sp[0]->s_sr; burrow_init(x,1); } dsp_add(burrow_perform, 7, x, sp[0]->s_vec, sp[1]->s_vec, sp[2]->s_vec, sp[3]->s_vec, sp[4]->s_vec, sp[0]->s_n); }