#include "MSPd.h" #include "fftease.h" #include "PenroseOscil.h" #include "PenroseRand.h" #define OBJECT_NAME "centerring~" #define MAX_WARP 16.0 #if MSP void *centerring_class; #endif #if PD static t_class *centerring_class; #endif #define OBJECT_NAME "centerring~" typedef struct _centerring { #if MSP t_pxobject x_obj; #endif #if PD t_object x_obj; float x_f; #endif int R; int N; int N2; int Nw; int Nw2; int D; int i; int inCount; int bufferLength; int recalc; int seed; int *bitshuffle; float baseFreq; float constFreq; float bandFreq; float frameR; float *ringPhases; float *ringIncrements; float *sineBuffer; float *Wanal; float *Wsyn; float *inputOne; float *Hwin; float *bufferOne; float *channelOne; float *newChannel; float *newAmplitudes; float *output; float mult; float *trigland; short connected[8]; short mute; int overlap;//overlap factor int winfac;//window factor int vs;//vector size } t_centerring; /* msp function prototypes */ void *centerring_new(t_symbol *s, int argc, t_atom *argv); t_int *centerring_perform(t_int *w); void centerring_dsp(t_centerring *x, t_signal **sp, short *count); void centerring_float(t_centerring *x, double myFloat); void centerring_assist(t_centerring *x, void *b, long m, long a, char *s); void centerring_dest(t_centerring *x, double f); void centerring_messages(t_centerring *x, t_symbol *s, short argc, t_atom *argv); void centerring_adjust( t_centerring *x ); void centerring_zerophases( t_centerring *x ); void centerring_randphases( t_centerring *x ); void centerring_free(t_centerring *x); void centerring_init(t_centerring *x, short initialized); void centerring_mute(t_centerring *x, t_floatarg toggle); void centerring_overlap(t_centerring *x, t_floatarg o); void centerring_fftinfo( t_centerring *x ); void centerring_winfac(t_centerring *x, t_floatarg f); /* float input handling routine for shape width (MSP only) */ #if MSP void centerring_float( t_centerring *x, t_floatarg df ) { float myFloat = (float) df; int inlet = x->x_obj.z_in; if ( inlet == 1 ) { x->baseFreq = myFloat; x->recalc = 1; } if ( inlet == 2 ) { x->bandFreq = myFloat; x->recalc = 1; } if ( inlet == 3 ) { x->constFreq = myFloat; x->recalc = 1; } } void main(void) { setup( (struct messlist **) ¢erring_class, (method) centerring_new, (method) centerring_free, (short) sizeof(t_centerring), 0,A_GIMME, 0); addmess((method)centerring_dsp, "dsp", A_CANT, 0); addmess((method)centerring_assist,"assist",A_CANT,0); addmess((method)centerring_messages,"seed", A_GIMME, 0); addmess((method)centerring_messages,"zerophases", A_GIMME, 0); addmess((method)centerring_messages,"randphases", A_GIMME, 0); addmess((method)centerring_mute,"mute", A_FLOAT, 0); addmess((method)centerring_overlap,"overlap", A_FLOAT, 0); addmess((method)centerring_winfac,"winfac", A_FLOAT, 0); addmess((method)centerring_fftinfo,"fftinfo", 0); addfloat((method)centerring_float); dsp_initclass(); post("%s %s",OBJECT_NAME,FFTEASE_ANNOUNCEMENT); } #endif #if PD void centerring_tilde_setup(void) { centerring_class = class_new(gensym("centerring~"), (t_newmethod)centerring_new, (t_method)centerring_free ,sizeof(t_centerring), 0,A_GIMME,0); CLASS_MAINSIGNALIN(centerring_class, t_centerring, x_f); class_addmethod(centerring_class, (t_method)centerring_dsp, gensym("dsp"), 0); class_addmethod(centerring_class, (t_method)centerring_assist, gensym("assist"), 0); class_addmethod(centerring_class, (t_method)centerring_messages, gensym("seed"), A_GIMME,0); class_addmethod(centerring_class, (t_method)centerring_messages, gensym("zerophases"), A_GIMME,0); class_addmethod(centerring_class, (t_method)centerring_messages, gensym("randphases"), A_GIMME,0); class_addmethod(centerring_class, (t_method)centerring_overlap, gensym("overlap"), A_FLOAT,0); class_addmethod(centerring_class, (t_method)centerring_winfac, gensym("winfac"), A_FLOAT,0); class_addmethod(centerring_class, (t_method)centerring_mute, gensym("mute"), A_FLOAT,0); class_addmethod(centerring_class, (t_method)centerring_fftinfo, gensym("fftinfo"),0); post("%s %s",OBJECT_NAME,FFTEASE_ANNOUNCEMENT); } #endif void centerring_messages(t_centerring *x, t_symbol *s, short argc, t_atom *argv) { if (s == gensym("seed")) x->seed = (int) atom_getfloatarg(0,argc,argv); if (s == gensym("zerophases")) centerring_zerophases( x ); if (s == gensym("randphases")) centerring_randphases( x ); } /* diagnostic messages for Max */ void centerring_assist (t_centerring *x, void *b, long msg, long arg, char *dst) { if (msg == 1) { switch (arg) { case 0: sprintf(dst,"(signal) Input"); break; case 1: sprintf(dst,"(signal/float) Base Modulation Frequency"); break; case 2: sprintf(dst,"(signal/float) Frequency Deviation Bandwidth"); break; case 3: sprintf(dst,"(signal/float) Frequency Deviation Constant"); break; } } else { if (msg == 2) sprintf(dst,"(signal) Output"); } } void *centerring_new(t_symbol *s, int argc, t_atom *argv) { #if MSP t_centerring *x = (t_centerring *) newobject(centerring_class); dsp_setup((t_pxobject *)x, 4); outlet_new((t_pxobject *)x, "signal"); #endif #if PD t_centerring *x = (t_centerring *)pd_new(centerring_class); inlet_new(&x->x_obj, &x->x_obj.ob_pd,gensym("signal"), gensym("signal")); inlet_new(&x->x_obj, &x->x_obj.ob_pd,gensym("signal"), gensym("signal")); inlet_new(&x->x_obj, &x->x_obj.ob_pd,gensym("signal"), gensym("signal")); outlet_new(&x->x_obj, gensym("signal")); #endif /* optional arguments: baseFreq, bandFreq, constFreq, seed, overlap, winfac */ x->overlap = x->winfac = 0; x->baseFreq = atom_getfloatarg(0,argc,argv); x->bandFreq = atom_getfloatarg(1,argc,argv); x->constFreq = atom_getfloatarg(2,argc,argv); x->seed = atom_getfloatarg(3,argc,argv); x->overlap = atom_getfloatarg(4,argc,argv); x->winfac = atom_getfloatarg(5,argc,argv); if(!fftease_power_of_two(x->overlap)){ x->overlap = 4; } if(!fftease_power_of_two(x->winfac)){ x->winfac = 1; } if(x->baseFreq <= 0.0) x->baseFreq = 1.; if(x->bandFreq <= 0.0) x->bandFreq = .2; if(x->constFreq <= 0) x->constFreq = 1.; x->vs = sys_getblksize(); x->R = sys_getsr(); centerring_init(x,0); return(x); } void centerring_init(t_centerring *x, short initialized) { int i; x->D = x->vs; x->N = x->D * x->overlap; x->Nw = x->N * x->winfac; limit_fftsize(&x->N,&x->Nw,OBJECT_NAME); x->N2 = (x->N)>>1; x->Nw2 = (x->Nw)>>1; x->inCount = -(x->Nw); x->mult = 1. / (float) x->N; x->frameR = (float) x->R / (float) x->D; if(!initialized){ x->mute = 0; x->bufferLength = 131072; x->recalc = 0; x->Wanal = (float *) calloc(MAX_Nw, sizeof(float)); x->Wsyn = (float *) calloc(MAX_Nw, sizeof(float)); x->Hwin = (float *) calloc(MAX_Nw, sizeof(float)); x->inputOne = (float *) calloc(MAX_Nw, sizeof(float)); x->bufferOne = (float *) calloc(MAX_N, sizeof(float)); x->channelOne = (float *) calloc((MAX_N+2), sizeof(float)); x->newChannel = (float *) calloc(MAX_N+2, sizeof(float)); x->newAmplitudes = (float *) calloc(((MAX_N2 + 1) * 16), sizeof(float) ); x->ringPhases = (float *) calloc((MAX_N2 + 1), sizeof(float)); x->ringIncrements = (float *) calloc((MAX_N2 + 1), sizeof(float)); x->sineBuffer = (float *) calloc((x->bufferLength + 1), sizeof(float)); x->output = (float *) calloc(MAX_Nw, sizeof(float)); x->bitshuffle = (int *) calloc(MAX_N * 2, sizeof(int)); x->trigland = (float *) calloc(MAX_N * 2, sizeof(float)); } memset((char *)x->inputOne,0,x->Nw); memset((char *)x->output,0,x->Nw); memset((char *)x->bufferOne,0,x->N); memset((char *)x->channelOne,0,x->N+2); memset((char *)x->newChannel,0,x->N+2); memset((char *)x->ringPhases,0,(x->N2+1)); memset((char *)x->ringIncrements,0,(x->N2+1)); memset((char *)x->newAmplitudes,0,(x->N2+1)); init_rdft(x->N, x->bitshuffle, x->trigland); makehanning( x->Hwin, x->Wanal, x->Wsyn, x->Nw, x->N, x->D, 0); makeSineBuffer(x->sineBuffer, x->bufferLength); centerring_adjust(x); centerring_zerophases(x); } void centerring_free(t_centerring *x) { #if MSP dsp_free((t_pxobject *) x); #endif free(x->trigland); free(x->bitshuffle); free(x->Wanal); free(x->Wsyn); free(x->Hwin); free(x->inputOne); free(x->bufferOne); free(x->channelOne); free(x->output); free(x->newChannel); free(x->newAmplitudes); free(x->ringPhases); free(x->ringIncrements); free(x->sineBuffer); } void centerring_adjust( t_centerring *x ) { int i; float *ringIncrements = x->ringIncrements, *ringPhases = x->ringPhases; /* initialize oscillator increments and phases */ for (i=0; i < x->N2; i++) { *(ringIncrements+i) = frequencyToIncrement( x->frameR, x->baseFreq * ( (rrand(&(x->seed)) * x->bandFreq) + x->constFreq ), x->bufferLength ); } } void centerring_zerophases( t_centerring *x ) { int i; for (i=0; i < x->N2; i++) *((x->ringPhases)+i) = 0.; } void centerring_randphases( t_centerring *x ) { int i; for (i=0; i < x->N2; i++) *((x->ringPhases)+i) = prand(&(x->seed)) * (float) (x->bufferLength); } t_int *centerring_perform(t_int *w) { int i,j, bindex, inCount, R, N, N2, D, Nw, newLength, bufferLength, even, odd, *bitshuffle; float mult, bandFreq, constFreq, baseFreq, a1, b1, interpIncr, interpPhase, *inputOne, *inputTwo, *bufferOne, *bufferTwo, *output, *Wanal, *Wsyn, *ringPhases, *ringIncrements, *sineBuffer, *channelOne, *newChannel, *newAmplitudes, *trigland; t_centerring *x = (t_centerring *) (w[1]); t_float *inOne = (t_float *) (w[2]); t_float *vec_baseFreq = (t_float *) (w[3]); t_float *vec_bandFreq = (t_float *) (w[4]); t_float *vec_constFreq = (t_float *) (w[5]); t_float *out = (t_float *)(w[6]); t_int n = (int) (w[7]); short *connected = x->connected; if(connected[1]){ x->recalc = 1; x->baseFreq = *vec_baseFreq; } if(connected[2]){ x->recalc = 1; x->bandFreq = *vec_bandFreq; } if(connected[3]){ x->recalc = 1; x->constFreq = *vec_constFreq; } if(x->mute){ while(n--) *out++ = 0.0; return (w+8); } /* dereference structure */ inputOne = x->inputOne; bufferOne = x->bufferOne; inCount = x->inCount; R = x->R; N = x->N; N2 = x->N2; D = x->D; Nw = x->Nw; Wanal = x->Wanal; Wsyn = x->Wsyn; output = x->output; channelOne = x->channelOne; newChannel = x->newChannel; newAmplitudes = x->newAmplitudes; bitshuffle = x->bitshuffle; trigland = x->trigland; mult = x->mult; bufferLength = x->bufferLength; ringPhases = x->ringPhases; ringIncrements = x->ringIncrements; sineBuffer = x->sineBuffer; /* recalculate our oscillator values if object inputs have been updated */ if (x->recalc) centerring_adjust( x ); x->recalc = 0; /* fill our retaining buffers */ inCount += D; for ( j = 0 ; j < Nw - D ; j++ ) inputOne[j] = inputOne[j+D]; for ( j = Nw - D; j < Nw; j++ ) inputOne[j] = *inOne++; /* apply hamming window and fold our window buffer into the fft buffer */ fold( inputOne, Wanal, Nw, bufferOne, N, inCount ); /* do an fft */ rdft( N, 1, bufferOne, bitshuffle, trigland ); /* convert to polar coordinates from complex values */ for ( i = 0; i <= N2; i++ ) { odd = ( even = i<<1 ) + 1; a1 = ( i == N2 ? *(bufferOne+1) : *(bufferOne+even) ); b1 = ( i == 0 || i == N2 ? 0. : *(bufferOne+odd) ); /* replace signal one's phases with those of signal two */ *(channelOne+even) = hypot( a1, b1 ); *(channelOne+odd) = -atan2( b1, a1 ); } /* perform ring modulation on successive fft frames */ for (i=0; i < N2; i++) { even = i<<1; *(channelOne+even) *= bufferOscil( ringPhases+i, *(ringIncrements+i), sineBuffer, bufferLength ); } /* convert from polar to cartesian */ for ( i = 0; i <= N2; i++ ) { odd = ( even = i<<1 ) + 1; *(bufferOne+even) = *(channelOne+even) * cos( *(channelOne+odd) ); if ( i != N2 ) *(bufferOne+odd) = (*(channelOne+even)) * -sin( *(channelOne+odd) ); } /* do an inverse fft */ rdft( N, -1, bufferOne, bitshuffle, trigland ); /* dewindow our result */ overlapadd( bufferOne, N, Wsyn, output, Nw, inCount); /* set our output and adjust our retaining output buffer */ for ( j = 0; j < D; j++ ) *out++ = output[j] * mult; for ( j = 0; j < Nw - D; j++ ) output[j] = output[j+D]; for ( j = Nw - D; j < Nw; j++ ) output[j] = 0.; /* restore state variables */ x->inCount = inCount % Nw; return (w+8); } void centerring_mute(t_centerring *x, t_floatarg toggle) { x->mute = (short)toggle; } void centerring_overlap(t_centerring *x, t_floatarg o) { if(!fftease_power_of_two((int)o)){ error("%f is not a power of two",o); return; } x->overlap = (int)o; centerring_init(x,1); } void centerring_winfac(t_centerring *x, t_floatarg f) { if(!fftease_power_of_two((int)f)){ error("%f is not a power of two",f); return; } x->winfac = (int)f; centerring_init(x,1); } void centerring_fftinfo( t_centerring *x ) { if( ! x->overlap ){ post("zero overlap!"); return; } post("%s: FFT size %d, hopsize %d, windowsize %d", OBJECT_NAME, x->N, x->N/x->overlap, x->Nw); } void centerring_dsp(t_centerring *x, t_signal **sp, short *count) { int i; #if MSP for( i = 0; i < 4; i++ ){ x->connected[i] = count[i]; } #endif #if PD for( i = 0; i < 4; i++ ){ x->connected[i] = 1; } #endif if(x->vs != sp[0]->s_n || x->R != sp[0]->s_sr){ x->vs = sp[0]->s_n; x->R = sp[0]->s_sr; centerring_init(x,1); } dsp_add(centerring_perform, 7, x, sp[0]->s_vec, sp[1]->s_vec, sp[2]->s_vec, sp[3]->s_vec, sp[4]->s_vec, sp[0]->s_n); }