#include "MSPd.h" #include "fftease.h" #if MSP void *crossx_class; #endif #if PD static t_class *crossx_class; #endif #define OBJECT_NAME "crossx~" typedef struct _crossx { #if MSP t_pxobject x_obj; #endif #if PD t_object x_obj; float x_f; #endif int R; int N; int N2; int Nw; int Nw2; int D; int i; float *input1; float *buffer1; float *channel1; float *input2; float *buffer2; float *channel2; float *last_channel; // int inCount; float *Hwin; float *Wanal; float *Wsyn; float *output; /* crossx vars */ float *c_lastphase_in1; float *c_lastphase_in2; float *c_lastphase_out; float c_fundamental; float c_factor_in; float c_factor_out; float threshie; short thresh_connected; // for fast fft float mult; float *trigland; int *bitshuffle; int overlap;//overlap factor int winfac;//window factor int vs;//vector size short mute;//flag short autonorm;// for self gain regulation } t_crossx; void *crossx_new(t_symbol *s, int argc, t_atom *argv); t_int *offset_perform(t_int *w); t_int *crossx_perform(t_int *w); void crossx_dsp(t_crossx *x, t_signal **sp, short *count); void crossx_assist(t_crossx *x, void *b, long m, long a, char *s); void crossx_float(t_crossx *x, double f); void *crossx_new(t_symbol *s, int argc, t_atom *argv); void crossx_init(t_crossx *x, short initialized); void crossx_overlap(t_crossx *x, t_floatarg o); void crossx_winfac(t_crossx *x, t_floatarg o); void crossx_fftinfo(t_crossx *x); void crossx_mute(t_crossx *x, t_floatarg toggle); void crossx_autonorm(t_crossx *x, t_floatarg toggle); void crossx_free(t_crossx *x); #if MSP void main(void) { setup((t_messlist **)&crossx_class, (method)crossx_new, (method)dsp_free, (short)sizeof(t_crossx), 0L, A_GIMME, 0); addmess((method)crossx_dsp, "dsp", A_CANT, 0); addmess((method)crossx_assist,"assist",A_CANT,0); addmess((method)crossx_mute,"mute",A_DEFFLOAT,0); addmess((method)crossx_overlap, "overlap", A_DEFFLOAT, 0); addmess((method)crossx_winfac, "winfac", A_DEFFLOAT, 0); addmess((method)crossx_fftinfo, "fftinfo", 0); addmess((method)crossx_autonorm, "autonorm", A_DEFFLOAT, 0); addfloat((method)crossx_float); dsp_initclass(); post("%s %s",OBJECT_NAME,FFTEASE_ANNOUNCEMENT); } #endif #if PD void crossx_tilde_setup(void) { crossx_class = class_new(gensym("crossx~"), (t_newmethod)crossx_new, (t_method)crossx_free ,sizeof(t_crossx), 0,A_GIMME,0); CLASS_MAINSIGNALIN(crossx_class, t_crossx, x_f); class_addmethod(crossx_class, (t_method)crossx_dsp, gensym("dsp"), 0); class_addmethod(crossx_class, (t_method)crossx_assist, gensym("assist"), 0); class_addmethod(crossx_class, (t_method)crossx_mute, gensym("mute"), A_DEFFLOAT,0); class_addmethod(crossx_class, (t_method)crossx_overlap, gensym("overlap"), A_DEFFLOAT,0); class_addmethod(crossx_class, (t_method)crossx_winfac, gensym("winfac"), A_DEFFLOAT,0); class_addmethod(crossx_class, (t_method)crossx_fftinfo, gensym("fftinfo"), 0); class_addmethod(crossx_class, (t_method)crossx_autonorm, gensym("autonorm"), A_DEFFLOAT,0); post("%s %s",OBJECT_NAME,FFTEASE_ANNOUNCEMENT); } #endif void crossx_autonorm(t_crossx *x, t_floatarg toggle) { x->autonorm = (short) toggle; } void crossx_assist (t_crossx *x, void *b, long msg, long arg, char *dst) { if (msg==1) { switch (arg) { case 0: sprintf(dst,"(signal) Driver Sound"); break; case 1: sprintf(dst,"(signal) Filter Sound"); break; case 2: sprintf(dst,"(float/signal) Cross Synthesis Threshold"); break; } } else if (msg==2) { sprintf(dst,"(signal) Output"); } } void crossx_overlap(t_crossx *x, t_floatarg o) { if(!fftease_power_of_two((int)o)){ error("%f is not a power of two",o); return; } x->overlap = (int)o; crossx_init(x,1); } void crossx_winfac(t_crossx *x, t_floatarg f) { if(!fftease_power_of_two((int)f)){ error("%f is not a power of two",f); return; } x->winfac = (int)f; crossx_init(x,1); } void crossx_fftinfo( t_crossx *x ) { if( ! x->overlap ){ post("zero overlap!"); return; } post("%s: FFT size %d, hopsize %d, windowsize %d", OBJECT_NAME, x->N, x->N/x->overlap, x->Nw); } void crossx_mute(t_crossx *x, t_floatarg toggle) { x->mute = (short)toggle; } void crossx_free(t_crossx *x) { #if MSP dsp_free((t_pxobject *) x); #endif freebytes(x->trigland,0); freebytes(x->bitshuffle,0); freebytes(x->Wanal,0); freebytes(x->Wsyn,0); freebytes(x->input1,0); freebytes(x->input2,0); freebytes(x->Hwin,0); freebytes(x->buffer1,0); freebytes(x->buffer2,0); freebytes(x->channel1,0); freebytes(x->channel2,0); freebytes(x->output,0); /* these last are extra - kill if we clean up - upstairs free(x->c_lastphase_in1); free(x->c_lastphase_in2); free(x->c_lastphase_out); free(x->last_channel);*/ } #if MSP void crossx_float(t_crossx *x, double f) // Look at floats at inlets { int inlet = x->x_obj.z_in; if (inlet == 2) { x->threshie = f; } } #endif void *crossx_new(t_symbol *s, int argc, t_atom *argv) { #if MSP t_crossx *x = (t_crossx *)newobject(crossx_class); dsp_setup((t_pxobject *)x,3); outlet_new((t_pxobject *)x, "signal"); #endif #if PD t_crossx *x = (t_crossx *)pd_new(crossx_class); inlet_new(&x->x_obj, &x->x_obj.ob_pd,gensym("signal"), gensym("signal")); inlet_new(&x->x_obj, &x->x_obj.ob_pd,gensym("signal"), gensym("signal")); outlet_new(&x->x_obj, gensym("signal")); #endif x->overlap = atom_getfloatarg(0,argc,argv); x->winfac = atom_getfloatarg(1,argc,argv); if(x->overlap <= 0) x->overlap = 4; x->winfac = 1; x->R = sys_getsr(); x->vs = sys_getblksize(); crossx_init(x,0); return (x); } void crossx_init(t_crossx *x, short initialized) { int i; x->D = x->vs; x->N = x->D * x->overlap; x->Nw = x->N * x->winfac; limit_fftsize(&x->N,&x->Nw,OBJECT_NAME); x->N2 = (x->N)>>1; x->Nw2 = (x->Nw)>>1; x->inCount = -(x->Nw); x->mult = 1. / (float) x->N; x->c_fundamental = (float) x->R/( (x->N2)<<1 ); x->c_factor_in = (float) x->R/((float)x->D * TWOPI); x->c_factor_out = TWOPI * (float) x->D / (float) x->R; if(!initialized){ x->threshie = .001 ; x->autonorm = 0; x->mute = 0; x->Wanal = (float *) getbytes((MAX_Nw) * sizeof(float)); x->Wsyn = (float *) getbytes((MAX_Nw) * sizeof(float)); x->Hwin = (float *) getbytes((MAX_Nw) * sizeof(float)); x->output = (float *) getbytes((MAX_Nw) * sizeof(float)); x->bitshuffle = (int *) getbytes((MAX_N * 2)* sizeof(int)); x->trigland = (float *) getbytes((MAX_N * 2)* sizeof(float)); x->input1 = (float *) getbytes(MAX_Nw * sizeof(float)); x->buffer1 = (float *) getbytes(MAX_N * sizeof(float)); x->channel1 = (float *) getbytes((MAX_N+2) * sizeof(float)); x->input2 = (float *) getbytes(MAX_Nw * sizeof(float)); x->buffer2 = (float *) getbytes(MAX_N * sizeof(float)); x->channel2 = (float *) getbytes((MAX_N+2) * sizeof(float)); x->last_channel = (float *) getbytes((MAX_N+2) * sizeof(float)); x->c_lastphase_in1 = (float *) getbytes((MAX_N2+1) * sizeof(float)); x->c_lastphase_in2 = (float *) getbytes((MAX_N2+1) * sizeof(float)); x->c_lastphase_out = (float *) getbytes((MAX_N2+1) * sizeof(float)); } memset((char *)x->input1,0,x->Nw * sizeof(float)); memset((char *)x->input2,0,x->Nw * sizeof(float)); memset((char *)x->output,0,x->Nw * sizeof(float)); memset((char *)x->buffer1,0,x->N * sizeof(float)); memset((char *)x->buffer2,0,x->N * sizeof(float)); memset((char *)x->channel1,0,(x->N+2) * sizeof(float)); memset((char *)x->channel2,0,(x->N+2) * sizeof(float)); memset((char *)x->c_lastphase_in1,0,(x->N2+1) * sizeof(float)); memset((char *)x->c_lastphase_in2,0,(x->N2+1) * sizeof(float)); memset((char *)x->c_lastphase_out,0,(x->N2+1) * sizeof(float)); init_rdft( x->N, x->bitshuffle, x->trigland); makehanning( x->Hwin, x->Wanal, x->Wsyn, x->Nw, x->N, x->D, 0); } t_int *crossx_perform(t_int *w) { int i, j; float a1, a2, b1, b2; int even, odd; int amp, freq; float gainer, threshie; float ingain = 0; float outgain, rescale; float mymult; t_crossx *x = (t_crossx *) (w[1]); t_float *in1 = (t_float *)(w[2]); t_float *in2 = (t_float *)(w[3]); t_float *in3 = (t_float *)(w[4]); t_float *out = (t_float *)(w[5]); t_int n = w[6]; /* dereference struncture */ float *input1 = x->input1; float *input2 = x->input2; float *buffer1 = x->buffer1; float *buffer2 = x->buffer2; int inCount = x->inCount; int R = x->R; int N = x->N; int N2 = x->N2; int D = x->D; int Nw = x->Nw; float *Wanal = x->Wanal; float *Wsyn = x->Wsyn; float *output = x->output; float *channel1 = x->channel1; float *channel2 = x->channel2; float *last_channel = x->last_channel; int *bitshuffle = x->bitshuffle; float *trigland = x->trigland; float mult = x->mult; float *c_lastphase_in1 = x->c_lastphase_in1; float *c_lastphase_in2 = x->c_lastphase_in2; float *c_lastphase_out = x->c_lastphase_out; float c_fundamental = x->c_fundamental; float c_factor_in = x->c_factor_in; float c_factor_out = x->c_factor_out; short autonorm = x->autonorm; if(x->mute){ while(n--){ *out++ = 0; } return w+7; } if( x->thresh_connected ){ threshie = *in3++; } else { threshie = x->threshie; } inCount += D; for ( j = 0 ; j < Nw - D ; j++ ){ input1[j] = input1[j+D]; input2[j] = input2[j+D]; } for ( j = Nw - D; j < Nw; j++ ) { input1[j] = *in1++; input2[j] = *in2++; } fold( input1, Wanal, Nw, buffer1, N, inCount ); fold( input2, Wanal, Nw, buffer2, N, inCount ); rdft( N, 1, buffer1, bitshuffle, trigland ); rdft( N, 1, buffer2, bitshuffle, trigland ); /* changing algorithm for window flexibility */ if(autonorm){ ingain = 0; for(i = 0; i < N; i+=2){ ingain += hypot(buffer1[i], buffer1[i+1]); } } for ( i = 0; i <= N2; i++ ) { odd = ( even = i<<1 ) + 1; a1 = ( i == N2 ? *(buffer1+1) : *(buffer1+even) ); b1 = ( i == 0 || i == N2 ? 0. : *(buffer1+odd) ); a2 = ( i == N2 ? *(buffer2+1) : *(buffer2+even) ); b2 = ( i == 0 || i == N2 ? 0. : *(buffer2+odd) ); gainer = hypot(a2, b2); if( gainer > threshie ) *(channel1+even) = hypot( a1, b1 ) * gainer; *(channel1+odd) = -atan2( b1, a1 ); *(buffer1+even) = *(channel1+even) * cos( *(channel1+odd) ); if ( i != N2 ) *(buffer1+odd) = -(*(channel1+even)) * sin( *(channel1+odd) ); } if(autonorm){ outgain = 0; for(i = 0; i < N; i+=2){ outgain += hypot(buffer1[i], buffer1[i+1]); } if(ingain <= .0000001){ // post("gain emergency!"); rescale = 1.0; } else { rescale = ingain / outgain; } // post("ingain %f outgain %f rescale %f",ingain, outgain, rescale); mymult = mult * rescale; } else { mymult = mult; } rdft( N, -1, buffer1, bitshuffle, trigland ); overlapadd( buffer1, N, Wsyn, output, Nw, inCount); for ( j = 0; j < D; j++ ) *out++ = output[j] * mymult; for ( j = 0; j < Nw - D; j++ ) output[j] = output[j+D]; for ( j = Nw - D; j < Nw; j++ ) output[j] = 0.; /* restore state variables */ x->inCount = inCount % Nw; return (w+7); } void crossx_dsp(t_crossx *x, t_signal **sp, short *count) { #if MSP x->thresh_connected = count[2]; #endif #if PD x->thresh_connected = 1; #endif if(x->vs != sp[0]->s_n || x->R != sp[0]->s_sr ){ x->vs = sp[0]->s_n; x->R = sp[0]->s_sr; crossx_init(x,1); } dsp_add(crossx_perform, 6, x, sp[0]->s_vec, sp[1]->s_vec, sp[2]->s_vec, sp[3]->s_vec, sp[0]->s_n); }