#include "MSPd.h" #include "fftease.h" #if MSP void *disarrain_class; #endif #if PD static t_class *disarrain_class; #endif #define OBJECT_NAME "disarrain~" typedef struct _disarrain { #if MSP t_pxobject x_obj; #endif #if PD t_object x_obj; float x_f; #endif int R; int N; int N2; int Nw; int Nw2; int D; int i; int inCount; float *Wanal; float *Wsyn; float *input; float *Hwin; float *buffer; float *channel; float *last_channel; float *composite_channel; float *output; int overlap; int winfac; // int *shuffle_mapping; int *last_shuffle_mapping; int *shuffle_tmp; // work space for making a new distribution int shuffle_count;// number of bins to swap int last_shuffle_count;// ditto from last shuffle mapping int max_bin; // float mult; float *trigland; int *bitshuffle; // void *list_outlet; t_atom *list_data; short mute; short bypass; float frame_duration; // duration in seconds of a single frame float interpolation_duration; // duration in seconds of interpolation int interpolation_frames; // number of frames to interpolate int frame_countdown; // keep track of position in interpolation int overlap_factor;// determines window size, etc. float top_frequency;// for remapping spectrum int perform_method;// 0 for lean, 1 for full conversion // for convert // float *c_lastphase_in; // float *c_lastphase_out; float c_fundamental; float c_factor_in; float c_factor_out; // check switching algorithm short lock;// lock for switching mapping arrays, but not used now short force_fade; // new fadetime set regardless of situation short force_switch;// binds new distribution to change of bin count } t_disarrain; void *disarrain_new(t_symbol *msg, short argc, t_atom *argv); t_int *disarrain_perform_lean(t_int *w); t_int *disarrain_perform_full(t_int *w); void disarrain_dsp(t_disarrain *x, t_signal **sp, short *count); void disarrain_assist(t_disarrain *x, void *b, long m, long a, char *s); void disarrain_switch_count (t_disarrain *x, t_floatarg i); void disarrain_topfreq (t_disarrain *x, t_floatarg freq); void disarrain_fadetime (t_disarrain *x, t_floatarg f); void reset_shuffle( t_disarrain *x ); void disarrain_showstate( t_disarrain *x ); void disarrain_list (t_disarrain *x, t_symbol *msg, short argc, t_atom *argv); void disarrain_setstate (t_disarrain *x, t_symbol *msg, short argc, t_atom *argv); void disarrain_isetstate (t_disarrain *x, t_symbol *msg, short argc, t_atom *argv); int rand_index(int max); void disarrain_mute(t_disarrain *x, t_floatarg toggle); void disarrain_bypass(t_disarrain *x, t_floatarg toggle); void copy_shuffle_array(t_disarrain *x); void interpolate_frames_to_channel(t_disarrain *x); void disarrain_killfade(t_disarrain *x); void disarrain_forcefade(t_disarrain *x, t_floatarg toggle); void disarrain_init(t_disarrain *x, short initialized); void disarrain_free(t_disarrain *x); void disarrain_overlap(t_disarrain *x, t_floatarg o); void disarrain_winfac(t_disarrain *x, t_floatarg o); void disarrain_fftinfo(t_disarrain *x); void disarrain_force_switch(t_disarrain *x, t_floatarg toggle); #if MSP void main(void) { setup((t_messlist **)&disarrain_class, (method)disarrain_new, (method)disarrain_free, (short)sizeof(t_disarrain), 0, A_GIMME, 0); addmess((method)disarrain_dsp, "dsp", A_CANT, 0); addint((method)disarrain_switch_count); addbang((method)reset_shuffle); addmess((method)disarrain_showstate,"showstate",0); addmess ((method)disarrain_list, "list", A_GIMME, 0); addmess ((method)disarrain_setstate, "setstate", A_GIMME, 0); addmess ((method)disarrain_isetstate, "isetstate", A_GIMME, 0); addmess((method)disarrain_assist,"assist",A_CANT,0); addmess ((method)disarrain_mute, "mute", A_FLOAT, 0); addmess ((method)disarrain_topfreq, "topfreq", A_FLOAT, 0); addmess ((method)disarrain_fadetime, "fadetime", A_FLOAT, 0); addmess ((method)disarrain_bypass, "bypass", A_FLOAT, 0); addmess ((method)disarrain_forcefade, "forcefade", A_FLOAT, 0); addmess ((method)disarrain_force_switch, "force_switch", A_FLOAT, 0); addmess ((method)disarrain_switch_count, "switch_count", A_FLOAT, 0); addmess ((method)disarrain_killfade, "killfade", 0); addmess ((method)reset_shuffle, "reset_shuffle", 0); addmess((method)disarrain_overlap, "overlap", A_DEFFLOAT, 0); addmess((method)disarrain_winfac, "winfac", A_DEFFLOAT, 0); addmess((method)disarrain_fftinfo, "fftinfo", 0); dsp_initclass(); post("%s %s",OBJECT_NAME,FFTEASE_ANNOUNCEMENT); } #endif #if PD void disarrain_tilde_setup(void) { disarrain_class = class_new(gensym("disarrain~"), (t_newmethod)disarrain_new, (t_method)disarrain_free ,sizeof(t_disarrain), 0,A_GIMME,0); CLASS_MAINSIGNALIN(disarrain_class, t_disarrain, x_f); class_addmethod(disarrain_class, (t_method)disarrain_dsp, gensym("dsp"), 0); class_addmethod(disarrain_class, (t_method)disarrain_showstate, gensym("showstate"), 0); class_addmethod(disarrain_class, (t_method)disarrain_list, gensym("list"), A_GIMME, 0); class_addmethod(disarrain_class, (t_method)disarrain_setstate, gensym("setstate"), A_GIMME, 0); class_addmethod(disarrain_class, (t_method)disarrain_isetstate, gensym("isetstate"), A_GIMME, 0); class_addmethod(disarrain_class, (t_method)disarrain_mute, gensym("mute"), A_FLOAT, 0); class_addmethod(disarrain_class, (t_method)disarrain_topfreq, gensym("topfreq"), A_FLOAT, 0); class_addmethod(disarrain_class, (t_method)disarrain_fadetime, gensym("fadetime"), A_FLOAT, 0); class_addmethod(disarrain_class, (t_method)disarrain_bypass, gensym("bypass"), A_FLOAT, 0); class_addmethod(disarrain_class, (t_method)disarrain_forcefade, gensym("forcefade"), A_FLOAT, 0); class_addmethod(disarrain_class, (t_method)disarrain_force_switch, gensym("force_switch"), A_FLOAT, 0); // class_addmethod(disarrain_class, (t_method)disarrain_killfade, gensym("reset"), A_FLOAT, 0); class_addmethod(disarrain_class, (t_method)reset_shuffle, gensym("bang"), 0); class_addmethod(disarrain_class, (t_method)reset_shuffle, gensym("reset_shuffle"), 0); class_addmethod(disarrain_class, (t_method)disarrain_switch_count, gensym("switch_count"), A_FLOAT, 0); class_addmethod(disarrain_class, (t_method)disarrain_overlap, gensym("overlap"), A_DEFFLOAT,0); class_addmethod(disarrain_class, (t_method)disarrain_winfac, gensym("winfac"), A_DEFFLOAT,0); class_addmethod(disarrain_class, (t_method)disarrain_fftinfo, gensym("fftinfo"), 0); post("%s %s",OBJECT_NAME,FFTEASE_ANNOUNCEMENT); } #endif void disarrain_free(t_disarrain *x) { #if MSP dsp_free((t_pxobject *) x); #endif freebytes(x->Wanal, x->Nw * sizeof(float)); freebytes(x->Wsyn, x->Nw * sizeof(float)); freebytes(x->input, x->Nw * sizeof(float)); freebytes(x->Hwin, x->Nw * sizeof(float)); freebytes(x->buffer, x->N * sizeof(float)); freebytes(x->channel, (x->N+2) * sizeof(float)); freebytes(x->last_channel, (x->N+2) * sizeof(float)); freebytes(x->composite_channel, x->N+2 * sizeof(float)); freebytes(x->output, x->Nw * sizeof(float)); freebytes(x->bitshuffle, (x->N * 2) * sizeof(int)); freebytes(x->trigland, x->N * 2 * sizeof(float)); freebytes(x->shuffle_mapping, x->N2 * sizeof(int)) ; freebytes(x->last_shuffle_mapping, x->N2 * sizeof(int)) ; freebytes(x->shuffle_tmp, x->N2 * sizeof(int)) ; freebytes(x->list_data,(x->N+2) * sizeof(t_atom)) ; // freebytes(x->c_lastphase_in, (x->N2+1)*sizeof(float)); // freebytes(x->c_lastphase_out,(x->N2+1)* sizeof(float)); } void disarrain_init(t_disarrain *x, short initialized) { int i; float curfreq; if(!fftease_power_of_two(x->winfac)){ x->winfac = 1; } if(!fftease_power_of_two(x->overlap)){ x->overlap = 4; } x->N = x->D * x->overlap; x->Nw = x->N * x->winfac; limit_fftsize(&x->N,&x->Nw,OBJECT_NAME); x->c_fundamental = (float) x->R/(float)( (x->N2)<<1 ); x->c_factor_in = (float) x->R/((float)x->D * TWOPI); x->c_factor_out = TWOPI * (float) x->D / (float) x->R; x->N2 = (x->N)>>1; x->Nw2 = (x->Nw)>>1; x->inCount = -(x->Nw); x->mult = 1. / (float) x->N; x->lock = 1; // not good enough if(initialized == 0){ x->Wanal = (float *) calloc(MAX_Nw , sizeof(float)); x->Wsyn = (float *) calloc(MAX_Nw , sizeof(float)); x->input = (float *) calloc(MAX_Nw , sizeof(float)); x->Hwin = (float *) calloc(MAX_Nw , sizeof(float)); x->buffer = (float *) calloc(MAX_N , sizeof(float)); x->channel = (float *) calloc(MAX_N+2 , sizeof(float)); x->last_channel = (float *) calloc(MAX_N+2 , sizeof(float)); x->composite_channel = (float *) calloc(MAX_N+2 , sizeof(float)); x->output = (float *) calloc(MAX_Nw , sizeof(float)); x->bitshuffle = (int *) calloc((MAX_N * 2) , sizeof(int)); x->trigland = (float *) calloc(MAX_N * 2 , sizeof(float)); x->shuffle_mapping = (int *) calloc( MAX_N2 , sizeof(int) ) ; x->last_shuffle_mapping = (int *) calloc( MAX_N2 , sizeof(int) ) ; x->shuffle_tmp = (int *) calloc( MAX_N2 , sizeof(int) ) ; x->list_data = (t_atom *) calloc((MAX_N+2) , sizeof(t_atom) ) ; x->mute = 0; x->bypass = 0; x->force_fade = 0; x->interpolation_duration = 0.1; //seconds } memset((char *)x->input,0,x->Nw * sizeof(float)); memset((char *)x->output,0,x->Nw * sizeof(float)); memset((char *)x->buffer,0,x->N * sizeof(float)); memset((char *)x->channel,0,(x->N+2) * sizeof(float)); memset((char *)x->last_channel,0,(x->N+2) * sizeof(float)); init_rdft( x->N, x->bitshuffle, x->trigland); makewindows( x->Hwin, x->Wanal, x->Wsyn, x->Nw, x->N, x->D); if(initialized != 2){ if( x->top_frequency < x->c_fundamental || x->top_frequency > 20000) { x->top_frequency = 1000.0 ; } x->max_bin = 1; curfreq = 0; while( curfreq < x->top_frequency ) { ++(x->max_bin); curfreq += x->c_fundamental ; } for( i = 0; i < x->N2; i++ ) { x->shuffle_mapping[i] = x->last_shuffle_mapping[i] = i*2; } reset_shuffle(x); // set shuffle lookup copy_shuffle_array(x);// copy it to the last lookup (for interpolation) x->frame_duration = (float) x->D / (float) x->R; x->interpolation_frames = x->interpolation_duration / x->frame_duration; x->frame_countdown = 0; x->shuffle_count = 0; x->last_shuffle_count = 0; } x->lock = 0; } void disarrain_force_switch(t_disarrain *x, t_floatarg f) { x->force_switch = (short)f; } void disarrain_fadetime (t_disarrain *x, t_floatarg f) { int frames; float duration; // forcefade allows forcing new fadetime at any time if(! x->force_fade) { #if MSP if(!sys_getdspstate()){ return; // DSP is inactive } #endif if(x->frame_countdown) { error("disarrain: fade in progress, fadetime reset blocked"); return; } } duration = f * .001; frames = duration / x->frame_duration; if( frames <= 1){ error("%s: too short fade",OBJECT_NAME); return; } x->interpolation_duration = f * .001; x->interpolation_frames = frames; } void disarrain_killfade(t_disarrain *x) { x->frame_countdown = 0; } void disarrain_topfreq (t_disarrain *x, t_floatarg freq) { float funda = (float) x->R / (2. * (float) x->N) ; float curfreq; if( freq < funda || freq > 20000) { freq = 1000.0 ; } x->max_bin = 1; curfreq = 0; while( curfreq < freq ) { ++(x->max_bin); curfreq += funda ; } } void disarrain_assist (t_disarrain *x, void *b, long msg, long arg, char *dst) { if (msg==1) { switch (arg) { case 0: sprintf(dst,"(signal) Input"); break; } } else if (msg==2) { switch (arg) { case 0: sprintf(dst,"(signal) Output"); break; case 1: sprintf(dst,"(signal) Interpolation Sync"); break; case 2: sprintf(dst,"(list) Current State"); break; } } } void *disarrain_new(t_symbol *msg, short argc, t_atom *argv) { #if MSP t_disarrain *x = (t_disarrain *)newobject(disarrain_class); x->list_outlet = listout((t_pxobject *)x); dsp_setup((t_pxobject *)x,1); outlet_new((t_pxobject *)x, "signal"); outlet_new((t_pxobject *)x, "signal"); #endif #if PD t_disarrain *x = (t_disarrain *)pd_new(disarrain_class); outlet_new(&x->x_obj, gensym("signal")); outlet_new(&x->x_obj, gensym("signal")); x->list_outlet = outlet_new(&x->x_obj,gensym("list")); #endif srand(time(0)); x->D = sys_getblksize(); x->R = sys_getsr(); x->top_frequency = atom_getfloatarg(0,argc,argv); x->overlap_factor = atom_getintarg(1,argc,argv); x->winfac = atom_getintarg(2,argc,argv); disarrain_init(x,0); return (x); } void disarrain_forcefade(t_disarrain *x, t_floatarg toggle) { x->force_fade = (short)toggle; } void disarrain_mute(t_disarrain *x, t_floatarg toggle) { x->mute = (short)toggle; } void disarrain_bypass(t_disarrain *x, t_floatarg toggle) { x->bypass = (short)toggle; } void disarrain_overlap(t_disarrain *x, t_floatarg df) { int o = (int)df; if(!fftease_power_of_two(o)){ error("%d is not a power of two",o); return; } x->overlap = (int)o; disarrain_init(x,1); } void disarrain_winfac(t_disarrain *x, t_floatarg f) { int wf = (int)f; if(!fftease_power_of_two(wf)){ error("%f is not a power of two",wf); return; } x->winfac = wf; disarrain_init(x,2); /* calling lighter reinit routine */ } void disarrain_fftinfo( t_disarrain *x ) { if( ! x->overlap ){ post("zero overlap!"); return; } post("%s: FFT size %d, hopsize %d, windowsize %d", OBJECT_NAME, x->N, x->N/x->overlap, x->Nw); } // lean convert perform method t_int *disarrain_perform_lean(t_int *w) { t_disarrain *x = (t_disarrain *) (w[1]); t_float *in = (t_float *)(w[2]); t_float *out = (t_float *)(w[3]); t_float *vec_sync = (t_float *)(w[4]); int n = w[5]; int R = x->R; int Nw = x->Nw; int N = x->N ; int N2 = x-> N2; int Nw2 = x->Nw2; float *Wanal = x->Wanal; float *Wsyn = x->Wsyn; float *Hwin = x->Hwin; float *input = x->input; float *output = x->output; float *buffer = x->buffer; float *channel = x->channel; float *last_channel = x->last_channel; int i,j; int inCount = x->inCount; int D = x->D; float tmp; float ival = 0.0; int *shuffle_mapping = x->shuffle_mapping; int shuffle_count = x->shuffle_count; int *last_shuffle_mapping = x->last_shuffle_mapping; int last_shuffle_count = x->last_shuffle_count; float mult = x->mult ; int *bitshuffle = x->bitshuffle; float *trigland = x->trigland ; int frame_countdown = x->frame_countdown; // will read from variable int interpolation_frames = x->interpolation_frames; if( x->mute || x->lock ){ while( n-- ){ *out++ = 0.0; } return (w+6); } if( x->bypass ){ while( n-- ){ *out++ = *in++ * 0.5; // gain compensation } return (w+6); } inCount += D; for ( j = 0 ; j < Nw - D ; j++ ){ input[j] = input[j+D]; } for ( j = Nw - D; j < Nw; j++ ) { input[j] = *in++; } fold(input, Wanal, Nw, buffer, N, inCount); rdft(N, 1, buffer, bitshuffle, trigland); leanconvert(buffer, channel, N2); // first time for interpolation, just do last frame if(frame_countdown == interpolation_frames){ for( i = 0, j = 0; i < last_shuffle_count ; i++, j+=2){ tmp = channel[j]; channel[j] = channel[last_shuffle_mapping[i]]; channel[last_shuffle_mapping[i]] = tmp; } --frame_countdown; } else if( frame_countdown > 0 ){ ival = (float)frame_countdown/(float)interpolation_frames; // copy current frame to lastframe for(j = 0; j < N; j+=2){ last_channel[j] = channel[j]; } // make last frame swap for(i = 0, j = 0; i < last_shuffle_count ; i++, j+=2){ tmp = last_channel[j]; last_channel[j] = last_channel[last_shuffle_mapping[i]]; last_channel[last_shuffle_mapping[i]] = tmp; } // make current frame swap for( i = 0, j = 0; i < shuffle_count ; i++, j+=2){ tmp = channel[j]; channel[j] = channel[shuffle_mapping[i]]; channel[shuffle_mapping[i]] = tmp; } // now interpolate between the two for(j = 0; j < N; j+=2){ channel[j] = channel[j] + ival * (last_channel[j] - channel[j]); } --frame_countdown; if(frame_countdown <= 0){ copy_shuffle_array(x); } } else { // otherwise straight swapping for( i = 0, j = 0; i < shuffle_count ; i++, j+=2){ tmp = channel[j]; channel[j] = channel[ shuffle_mapping[i]]; channel[shuffle_mapping[i]] = tmp; } } leanunconvert( channel, buffer, N2 ); rdft( N, -1, buffer, bitshuffle, trigland ); overlapadd( buffer, N, Wsyn, output, Nw, inCount); for ( j = 0; j < D; j++ ) *out++ = output[j] * mult; for ( j = 0; j < Nw - D; j++ ) output[j] = output[j+D]; for ( j = Nw - D; j < Nw; j++ ) output[j] = 0.; /* send out sync signal */ for(j = 0; j < n; j++){ vec_sync[j] = ival; } /* restore state variables */ x->inCount = inCount % Nw; x->frame_countdown = frame_countdown; return (w+6); } void interpolate_frames_to_channel(t_disarrain *x) { float ival; float tmp; int i,j; int frame_countdown = x->frame_countdown; int interpolation_frames = x->interpolation_frames; float *channel = x->channel; float *last_channel = x->last_channel; int *shuffle_mapping = x->shuffle_mapping; int shuffle_count = x->shuffle_count; int *last_shuffle_mapping = x->shuffle_mapping; int last_shuffle_count = x->shuffle_count; int local_max_bins; int N = x->N; ival = (float)frame_countdown/(float)interpolation_frames; // post("interpolation:%f",ival); local_max_bins = (shuffle_count > last_shuffle_count)? shuffle_count : last_shuffle_count; // copy channel (only amplitudes) for(j = 0; j < N; j+=2){ last_channel[j] = channel[j]; } // make last frame for( i = 0, j = 0; i < last_shuffle_count ; i++, j+=2){ tmp = last_channel[j]; last_channel[j] = last_channel[last_shuffle_mapping[i]]; last_channel[last_shuffle_mapping[i]] = tmp; } // make current frame for( i = 0, j = 0; i < shuffle_count ; i++, j+=2){ tmp = channel[j]; channel[j] = channel[shuffle_mapping[i]]; channel[shuffle_mapping[i]] = tmp; } // now interpolate between the two for(j = 0; j < N; j+=2){ // channel[j] = channel[j] + ival * (last_channel[j] - channel[j]); // or better? channel[j] += ival * (last_channel[j] - channel[j]); } } void disarrain_switch_count (t_disarrain *x, t_floatarg f) { int i = f; /* #if MSP if(! sys_getdspstate()){ return; // DSP is inactive } #endif */ if( x->frame_countdown && !x->force_fade){ error("%s: fade in progress, no action taken",OBJECT_NAME); return; } if( i < 0 ){ i = 0; } if( i > x->N2 ) { i = x->N2; } copy_shuffle_array(x); x->last_shuffle_count = x->shuffle_count; x->shuffle_count = i; x->frame_countdown = x->interpolation_frames; // force interpolation } void reset_shuffle (t_disarrain *x) { int i; int temp, p1, p2; int max = x->max_bin; int N2 = x->N2; int *shuffle_tmp = x->shuffle_tmp; int *shuffle_mapping = x->shuffle_mapping; copy_shuffle_array(x); for( i = 0; i < N2; i++ ) { shuffle_tmp[i] = i; } // improve this algorithm for( i = 0; i < max; i++ ) { p1 = shuffle_tmp[ rand_index( max ) ]; p2 = shuffle_tmp[ rand_index( max ) ]; temp = shuffle_tmp[p1]; shuffle_tmp[ p1 ] = shuffle_tmp[ p2 ]; shuffle_tmp[ p2 ] = temp; } // now map to amplitude channels for( i = 0; i < N2; i++ ) { shuffle_tmp[i] *= 2; } // force interpolation x->frame_countdown = x->interpolation_frames; x->lock = 1; for( i = 0; i < N2; i++ ) { shuffle_mapping[i] = shuffle_tmp[i]; } x->lock = 0; } void copy_shuffle_array(t_disarrain *x) { int i; int N2 = x->N2; int *shuffle_mapping = x->shuffle_mapping; int *last_shuffle_mapping = x->last_shuffle_mapping; for(i = 0; ilast_shuffle_count = x->shuffle_count; } int rand_index(int max) { return (rand() % max); } void disarrain_dsp(t_disarrain *x, t_signal **sp, short *count) { long i; if(x->D != sp[0]->s_n ||x->D != sp[0]->s_n ) { x->R = sp[0]->s_sr; x->D = sp[0]->s_n; disarrain_init(x,1); } dsp_add(disarrain_perform_lean, 5, x, sp[0]->s_vec, sp[1]->s_vec, sp[2]->s_vec, sp[0]->s_n); } // ENTER STORED SHUFFLE void disarrain_list (t_disarrain *x, t_symbol *msg, short argc, t_atom *argv) { short i; int ival; // post("list message called"); x->shuffle_count = argc; // post("list: count now %d",x->shuffle_count ); for (i=0; i < argc; i++) { #if MSP ival = argv[i].a_w.w_long; #endif #if PD ival = atom_getfloatarg(i,argc,argv); #endif if (ival < x->N2) { x->shuffle_mapping[i] = ival; // post("set %d to %d",i, x->shuffle_mapping[ i ]); } else { // post ("%d out of range",ival); } } // post("last val is %d", x->shuffle_mapping[argc - 1]); return; } void disarrain_isetstate (t_disarrain *x, t_symbol *msg, short argc, t_atom *argv) { short i; int ival; // x->last_shuffle_count = x->shuffle_count; copy_shuffle_array(x); x->shuffle_count = argc; // x->lock = 1; for (i=0; i < argc; i++) { ival = 2 * atom_getfloatarg(i,argc,argv); if ( ival < x->N2 && ival >= 0) { x->shuffle_mapping[ i ] = ival; }else { error("%s: %d is out of range",OBJECT_NAME, ival); } } // x->lock = 0; x->frame_countdown = x->interpolation_frames; return; } void disarrain_setstate (t_disarrain *x, t_symbol *msg, short argc, t_atom *argv) { short i; int ival; x->shuffle_count = argc; for (i=0; i < argc; i++) { ival = 2 *atom_getfloatarg(i,argc,argv); if ( ival < x->N2 && ival >= 0) { x->shuffle_mapping[ i ] = ival; } else { error("%s: %d is out of range",OBJECT_NAME, ival); } } return; } // REPORT CURRENT SHUFFLE STATUS void disarrain_showstate (t_disarrain *x ) { t_atom *list_data = x->list_data; short i; #if MSP for( i = 0; i < x->shuffle_count; i++ ) { SETLONG(list_data+i,x->shuffle_mapping[i]/2); } #endif #if PD for( i = 0; i < x->shuffle_count; i++ ) { SETFLOAT(list_data+i,(float)x->shuffle_mapping[i]/2); } #endif outlet_list(x->list_outlet,0,x->shuffle_count,list_data); return; }