#include "MSPd.h" #include "fftease.h" #if MSP void *multyq_class; #endif #if PD static t_class *multyq_class; #endif #define OBJECT_NAME "multyq~" typedef struct _multyq { #if MSP t_pxobject x_obj; #endif #if PD t_object x_obj; float x_f; #endif int R; int N; int N2; int Nw; int Nw2; int D; int i; int inCount; float *Wanal; float *Wsyn; float *input; float *Hwin; float *buffer; float *channel; float *output; // float mult; float *trigland; int *bitshuffle; // for multyQ float cf1; float gainfac1; float bw1; float cf2; float gainfac2; float bw2; float cf3; float gainfac3; float bw3; float cf4; float gainfac4; float bw4; float *rcos; float *filt; float *freqs; int rcoslen; // short in2_connected; short in3_connected; short in4_connected; short in5_connected; short in6_connected; short in7_connected; short in8_connected; short in9_connected; short in10_connected; short in11_connected; short in12_connected; short in13_connected; short please_update; short always_update; short mute; short bypass; int overlap; int winfac; } t_multyq; void *multyq_new(t_symbol *s, int argc, t_atom *argv); t_int *offset_perform(t_int *w); t_int *multyq_perform(t_int *w); void multyq_dsp(t_multyq *x, t_signal **sp, short *count); void multyq_assist(t_multyq *x, void *b, long m, long a, char *s); void multyq_bypass(t_multyq *x, t_floatarg state); void multyq_mute(t_multyq *x, t_floatarg state); void update_filter_function(t_multyq *x); void multyq_float(t_multyq *x, double f); void filtyQ( float *S, float *C, float *filtfunc, int N2 ); void multyq_init(t_multyq *x, short initialized); void multyq_free(t_multyq *x); void multyq_fftinfo(t_multyq *x); void multyq_overlap(t_multyq *x, t_floatarg f); void multyq_winfac(t_multyq *x, t_floatarg f); #if MSP void main(void) { setup((t_messlist **)&multyq_class, (method)multyq_new, (method)multyq_free, (short)sizeof(t_multyq), 0, A_GIMME, 0); addmess((method)multyq_dsp, "dsp", A_CANT, 0); addmess((method)multyq_assist,"assist",A_CANT,0); addmess((method)multyq_bypass,"bypass",A_DEFFLOAT,0); addmess((method)multyq_mute,"mute",A_DEFFLOAT,0); addmess((method)multyq_overlap,"overlap",A_DEFFLOAT,0); addmess((method)multyq_winfac,"winfac",A_DEFFLOAT,0); addmess((method)multyq_fftinfo,"fftinfo",0); addfloat((method)multyq_float); dsp_initclass(); post("%s %s",OBJECT_NAME,FFTEASE_ANNOUNCEMENT); } #endif #if PD void multyq_tilde_setup(void) { multyq_class = class_new(gensym("multyq~"), (t_newmethod)multyq_new, (t_method)multyq_free ,sizeof(t_multyq), 0,A_GIMME,0); CLASS_MAINSIGNALIN(multyq_class, t_multyq, x_f); class_addmethod(multyq_class,(t_method)multyq_dsp,gensym("dsp"),0); class_addmethod(multyq_class,(t_method)multyq_mute,gensym("mute"),A_FLOAT,0); class_addmethod(multyq_class,(t_method)multyq_bypass,gensym("bypass"),A_FLOAT,0); class_addmethod(multyq_class,(t_method)multyq_overlap,gensym("overlap"),A_FLOAT,0); class_addmethod(multyq_class,(t_method)multyq_winfac,gensym("winfac"),A_FLOAT,0); class_addmethod(multyq_class,(t_method)multyq_fftinfo,gensym("fftinfo"),0); post("%s %s",OBJECT_NAME,FFTEASE_ANNOUNCEMENT); } #endif void multyq_free(t_multyq *x) { #if MSP dsp_free((t_pxobject *)x); #endif freebytes(x->Wanal,0); freebytes(x->Wsyn,0); freebytes(x->input,0); freebytes(x->Hwin,0); freebytes(x->buffer,0); freebytes(x->channel,0); freebytes(x->output,0); freebytes(x->bitshuffle,0); freebytes(x->trigland,0); freebytes(x->rcos,0); freebytes(x->freqs,0); freebytes(x->filt,0); } void multyq_overlap(t_multyq *x, t_floatarg f) { int i = (int) f; if(!fftease_power_of_two(i)){ error("%f is not a power of two",f); return; } x->overlap = i; multyq_init(x,1); } void multyq_winfac(t_multyq *x, t_floatarg f) { int i = (int)f; if(!fftease_power_of_two(i)){ error("%f is not a power of two",f); return; } x->winfac = i; multyq_init(x,2); } void multyq_fftinfo(t_multyq *x) { if( ! x->overlap ){ post("zero overlap!"); return; } post("%s: FFT size %d, hopsize %d, windowsize %d", OBJECT_NAME, x->N, x->N/x->overlap, x->Nw); } void *multyq_new(t_symbol *s, int argc, t_atom *argv) { int i; #if MSP t_multyq *x = (t_multyq *)newobject(multyq_class); dsp_setup((t_pxobject *)x,13); outlet_new((t_pxobject *)x, "signal"); x->x_obj.z_misc |= Z_NO_INPLACE; #endif #if PD t_multyq *x = (t_multyq *)pd_new(multyq_class); for(i=0; i<12; i++){ inlet_new(&x->x_obj, &x->x_obj.ob_pd, gensym("signal"), gensym("signal")); } outlet_new(&x->x_obj, gensym("signal")); #endif x->overlap = atom_getfloatarg(0,argc,argv); x->winfac = atom_getfloatarg(1,argc,argv); if(!fftease_power_of_two(x->overlap)) x->overlap = 4; if(!fftease_power_of_two(x->winfac)) x->winfac = 2; x->D = sys_getblksize(); x->R = sys_getsr(); if(!x->R) x->R = 44100; if(!x->D) x->D = 256; multyq_init(x,0); return (x); } void multyq_init(t_multyq *x, short initialized) { int i; float funda, base; x->N = x->D * x->overlap; x->Nw = x->N * x->winfac; limit_fftsize(&x->N,&x->Nw,OBJECT_NAME); x->N2 = (x->N)>>1; x->Nw2 = (x->Nw)>>1; x->mult = 1. / (float) x->N; x->inCount = -(x->Nw); if(!initialized){ x->please_update = 0; x->always_update = 0; x->rcoslen = 8192 ; x->Wanal = (float *) getbytes( (MAX_Nw) * sizeof(float)); x->Wsyn = (float *) getbytes( (MAX_Nw) * sizeof(float)); x->Hwin = (float *) getbytes( (MAX_Nw) * sizeof(float)); x->input = (float *) getbytes( MAX_Nw * sizeof(float) ); x->output = (float *) getbytes( MAX_Nw * sizeof(float) ); x->buffer = (float *) getbytes( MAX_N * sizeof(float) ); x->channel = (float *) getbytes( (MAX_N+2) * sizeof(float) ); x->bitshuffle = (int *) getbytes( MAX_N * 2 * sizeof( int ) ); x->trigland = (float *) getbytes( MAX_N * 2 * sizeof( float ) ); x->rcos = (float *) getbytes( x->rcoslen * sizeof( float ) ); x->freqs = (float *) getbytes( MAX_N2 * sizeof( float ) ); x->filt = (float *) getbytes( (MAX_N2 + 1) * sizeof( float ) ); x->cf1 = 200.; x->gainfac1 = 0.0; x->bw1 = .15; x->cf2 = 700.; x->gainfac2 = 0.0; x->bw2 = .1; x->cf3 = 3000.; x->gainfac3 = 0.0; x->bw3 = .15; x->cf4 = 12000.; x->gainfac4 = 0.0; x->bw4 = .15; x->mute = 0; x->bypass = 0; for (i = 0; i < x->rcoslen; i++){ x->rcos[i] = .5 - .5 * cos(((float)i/(float)x->rcoslen) * TWOPI); } } memset((char *)x->input,0,x->Nw * sizeof(float)); memset((char *)x->output,0,x->Nw * sizeof(float)); init_rdft( x->N, x->bitshuffle, x->trigland); makehanning(x->Hwin, x->Wanal, x->Wsyn, x->Nw, x->N, x->D, 0); funda = base = (float)x->R /(float)x->N ; for(i = 0; i < x->N2; i++){ x->freqs[i] = base; base += funda; } update_filter_function(x); } t_int *multyq_perform(t_int *w) { int i, j; t_multyq *x = (t_multyq *) (w[1]); short please_update = x->please_update; float *inbuf = (t_float *)(w[2]); float *in2 = (t_float *)(w[3]); float *in3 = (t_float *)(w[4]); float *in4 = (t_float *)(w[5]); float *in5 = (t_float *)(w[6]); float *in6 = (t_float *)(w[7]); float *in7 = (t_float *)(w[8]); float *in8 = (t_float *)(w[9]); float *in9 = (t_float *)(w[10]); float *in10 = (t_float *)(w[11]); float *in11 = (t_float *)(w[12]); float *in12 = (t_float *)(w[13]); float *in13 = (t_float *)(w[14]); float *outbuf = (t_float *)(w[15]); t_int n = w[16]; int inCount = x->inCount; float *Wanal = x->Wanal; float *Wsyn = x->Wsyn; float *input = x->input; float *Hwin = x->Hwin; float *buffer = x->buffer; float *channel = x->channel; float *output = x->output; int D = x->D; int I = D; int R = x->R; int Nw = x->Nw; int N = x->N ; int N2 = x-> N2; int Nw2 = x->Nw2; int *bitshuffle = x->bitshuffle; float *trigland = x->trigland; float *filt = x->filt; float mult = x->mult; int in = x->inCount ; int on = in; if(x->mute) { while (n--){ *outbuf++ = 0.; } return (w+17); } if(x->bypass) { while (n--){ *outbuf++ = *inbuf++; } return (w+17); } #if MSP if( x->in2_connected ){ x->cf1 = *in2++ ; } if( x->in3_connected ){ x->bw1 = *in3++ ; } if( x->in4_connected ){ x->gainfac1 = *in4++ ; } if( x->in5_connected ){ x->cf2 = *in5++ ; } if( x->in6_connected ){ x->bw2 = *in6++ ; } if( x->in7_connected ){ x->gainfac2 = *in7++ ; } if( x->in8_connected ){ x->cf3 = *in8++ ; } if( x->in9_connected ){ x->bw3 = *in9++ ; } if( x->in10_connected ){ x->gainfac3 = *in10++ ; } if( x->in11_connected ){ x->cf4 = *in11++ ; } if( x->in12_connected ){ x->bw4 = *in12++ ; } if( x->in13_connected ){ x->gainfac4 = *in13++; } #endif #if PD x->cf1 = *in2++; x->bw1 = *in3++; x->gainfac1 = *in4++; x->cf2 = *in5++; x->bw2 = *in6++; x->gainfac2 = *in7++; x->cf3 = *in8++; x->bw3 = *in9++; x->gainfac3 = *in10++; x->cf4 = *in11++; x->bw4 = *in12++; x->gainfac4 = *in13++; #endif if(x->always_update) { update_filter_function(x); } else if(please_update) { update_filter_function(x); please_update = 0; } in += D; on += I; for ( j = 0 ; j < (Nw - D) ; j++ ){ input[j] = input[j+D]; } for ( j = (Nw-D), i = 0 ; j < Nw; j++, i++ ) { input[j] = *inbuf++; } fold(input, Wanal, Nw, buffer, N, in); rdft(N, 1, buffer, bitshuffle, trigland); filtyQ(buffer, channel,filt, N2); rdft(N, -1, buffer, bitshuffle, trigland); overlapadd( buffer, N, Wsyn, output, Nw, inCount); for (j = 0; j < D; j++){ *outbuf++ = output[j] * mult; } for (j = 0; j < Nw - D; j++){ output[j] = output[j+D]; } for (j = Nw - D; j < Nw; j++){ output[j] = 0.; } x->inCount = in; x->please_update = please_update; return (w+17); } void multyq_bypass(t_multyq *x, t_floatarg state) { x->bypass = (short)state; } void multyq_mute(t_multyq *x, t_floatarg state) { x->mute = (short)state; } void multyq_dsp(t_multyq *x, t_signal **sp, short *count) { int i; if(x->R != sp[0]->s_sr||x->D != sp[0]->s_n){ x->R = sp[0]->s_sr; x->D = sp[0]->s_n; multyq_init(x,1); } #if MSP x->in2_connected = count[1]; x->in3_connected = count[2]; x->in4_connected = count[3]; x->in5_connected = count[4]; x->in6_connected = count[5]; x->in7_connected = count[6]; x->in8_connected = count[7]; x->in9_connected = count[8]; x->in10_connected = count[9]; x->in11_connected = count[10]; x->in12_connected = count[11]; x->in13_connected = count[12]; x->always_update = 0; for(i = 1; i < 13; i++) { x->always_update += count[i]; } #endif #if PD x->always_update = 1; #endif dsp_add(multyq_perform, 16, x, sp[0]->s_vec,sp[1]->s_vec,sp[2]->s_vec,sp[3]->s_vec,sp[4]->s_vec, sp[5]->s_vec,sp[6]->s_vec,sp[7]->s_vec,sp[8]->s_vec,sp[9]->s_vec, sp[10]->s_vec,sp[11]->s_vec,sp[12]->s_vec,sp[13]->s_vec,sp[0]->s_n); } void update_filter_function(t_multyq *x) { float funda, curfreq, m1, m2; float lo, hi ; float ploc, gainer; int i; float nyquist = (float)x->R / 2.0; float *filt = x->filt; float *rcos = x->rcos; float *freqs = x->freqs; int rcoslen = x->rcoslen; // sanity if( x->cf1 < 0 ){ x->cf1 = 0; } else if( x->cf1 > nyquist){ x->cf1 = nyquist ; } if( x->bw1 <= .05 ){ x->bw1 = .05; } else if( x->bw1 > 1. ){ x->bw1 = 1.; } if( x->gainfac1 < -1. ){ x->gainfac1 = -1; } if( x->cf2 < 0 ){ x->cf2 = 0; } else if( x->cf2> nyquist){ x->cf2 = nyquist ; } if( x->bw2 <= .05 ){ x->bw2 = .05; } else if( x->bw2 > 1. ){ x->bw2 = 1.; } if( x->gainfac2 < -1. ){ x->gainfac2 = -1; } if( x->cf3 < 0 ){ x->cf3 = 0; } else if( x->cf3 > nyquist){ x->cf3 = nyquist ; } if( x->bw3 <= .05 ){ x->bw3 = .05; } else if( x->bw3 > 1. ){ x->bw3 = 1.; } if( x->gainfac3 < -1. ){ x->gainfac3 = -1; } if( x->cf4 < 0 ){ x->cf4 = 0; } else if( x->cf4 > nyquist){ x->cf4 = nyquist ; } if( x->bw4 <= .05 ){ x->bw4 = .05; } else if( x->bw4 > 1. ){ x->bw4 = 1.; } if( x->gainfac4 < -1. ){ x->gainfac4 = -1; } for( i = 0; i < x->N2; i++ ) { x->filt[i] = 1.0 ; } // filt 1 lo = x->cf1 * (1.0 - x->bw1 ); hi = x->cf1 * (1.0 + x->bw1 ); for( i = 0; i < x->N2; i++ ) { if(freqs[i] >= lo && freqs[i] <= hi){ ploc = (freqs[i] - lo) / (hi - lo); gainer = 1 + x->gainfac1 * rcos[ (int) (ploc * rcoslen) ] ; if( gainer < 0 ){ gainer = 0; } filt[i] *= gainer ; } } // filt 2 lo = x->cf2 * (1.0 - x->bw2 ); hi = x->cf2 * (1.0 + x->bw2 ); for( i = 0; i < x->N2; i++ ) { if( freqs[i] >= lo && freqs[i] <= hi){ ploc = (freqs[i] - lo) / (hi - lo); gainer = 1 + x->gainfac2 * rcos[ (int) (ploc * rcoslen) ] ; if( gainer < 0 ){ gainer = 0; } filt[i] *= gainer ; } } // filt 3 lo = x->cf3 * (1.0 - x->bw3 ); hi = x->cf3 * (1.0 + x->bw3 ); for( i = 0; i < x->N2; i++ ) { if(freqs[i] >= lo && freqs[i] <= hi){ ploc = (freqs[i] - lo) / (hi - lo); gainer = 1 + x->gainfac3 * rcos[ (int) (ploc * rcoslen) ] ; if( gainer < 0 ){ gainer = 0; } filt[i] *= gainer ; } } // filt 4 lo = x->cf4 * (1.0 - x->bw4 ); hi = x->cf4 * (1.0 + x->bw4 ); for( i = 0; i < x->N2; i++ ) { if(freqs[i] >= lo && freqs[i] <= hi){ ploc = (freqs[i] - lo) / (hi - lo); gainer = 1 + x->gainfac4 * rcos[ (int) (ploc * rcoslen) ] ; if( gainer < 0 ){ gainer = 0; } filt[i] *= gainer ; } } } #if MSP void multyq_float(t_multyq *x, double f) // Look at floats at inlets { int inlet = x->x_obj.z_in; if (inlet == 1) { x->cf1 = f; } else if (inlet == 2) { x->bw1 = f; } else if (inlet == 3) { x->gainfac1 = f; } else if (inlet == 4) { x->cf2 = f; } else if (inlet == 5) { x->bw2 = f; } else if (inlet == 6) { x->gainfac2 = f; } else if (inlet == 7) { x->cf3 = f; } else if (inlet == 8) { x->bw3 = f; } else if (inlet == 9) { x->gainfac3 = f; } else if (inlet == 10) { x->cf4 = f; } else if (inlet == 11) { x->bw4 = f; } else if (inlet == 12) { x->gainfac4 = f; } x->please_update = 1; } #endif void multyq_assist (t_multyq *x, void *b, long msg, long arg, char *dst) { if (msg==1) { switch (arg) { case 0: sprintf(dst,"(signal) Input"); break; case 1: sprintf(dst,"(signal/float) Cf1");break; case 2: sprintf(dst,"(signal/float) Bw1"); break; case 3: sprintf(dst,"(signal/float) Gain1"); break; case 4: sprintf(dst,"(signal/float) Cf2"); break; case 5: sprintf(dst,"(signal/float) Bw2"); break; case 6: sprintf(dst,"(signal/float) Gain2"); break; case 7: sprintf(dst,"(signal/float) Cf3"); break; case 8: sprintf(dst,"(signal/float) Bw3"); break; case 9: sprintf(dst,"(signal/float) Gain3"); break; case 10: sprintf(dst,"(signal/float) Cf4"); break; case 11: sprintf(dst,"(signal/float) Bw4"); break; case 12: sprintf(dst,"(signal/float) Gain4"); break; } } else if (msg==2) { sprintf(dst,"(signal) Output"); } } void filtyQ( float *S, float *C, float *filtfunc, int N2 ) { int real, imag, amp, phase; float a, b; int i; float maxamp = 1.; for ( i = 0; i <= N2; i++ ) { imag = phase = ( real = amp = i<<1 ) + 1; a = ( i == N2 ? S[1] : S[real] ); b = ( i == 0 || i == N2 ? 0. : S[imag] ); C[amp] = hypot( a, b ); C[amp] *= filtfunc[ i ]; C[phase] = -atan2( b, a ); } for ( i = 0; i <= N2; i++ ) { imag = phase = ( real = amp = i<<1 ) + 1; S[real] = *(C+amp) * cos( *(C+phase) ); if ( i != N2 ) S[imag] = -*(C+amp) * sin( *(C+phase) ); } }