#include "MSPd.h" #include "fftease.h" #if MSP void *pvcompand_class; #endif #if PD static t_class *pvcompand_class; #endif #define OBJECT_NAME "pvcompand~" #define MAX_N (16384) #define MAX_Nw (MAX_N * 4) typedef struct _pvcompand { #if MSP t_pxobject x_obj; #endif #if PD t_object x_obj; float x_f; #endif int R; int N; int N2; int Nw; int Nw2; int D; int i; int inCount; float *Wanal; float *Wsyn; float *input; float *Hwin; float *buffer; float *channel; float *output; // float mult; float *trigland; int *bitshuffle; // float *curthresh ; float *atten; float *thresh ; int count; float thresh_interval; float max_atten; float atten_interval ; float tstep; float gstep; float last_max_atten; short norml; short mute; short bypass; short connected[2]; int overlap; int winfac; } t_pvcompand; void *pvcompand_new(t_symbol *s, int argc, t_atom *argv); t_int *offset_perform(t_int *w); t_int *pvcompand_perform(t_int *w); void pvcompand_dsp(t_pvcompand *x, t_signal **sp, short *count); void pvcompand_assist(t_pvcompand *x, void *b, long m, long a, char *s); void update_thresholds(t_pvcompand *x); void pvcompand_normalize(t_pvcompand *x, t_floatarg val); void pvcompand_float(t_pvcompand *x, double f); void pvcompand_free(t_pvcompand *x); float pvcompand_ampdb(float db); void pvcompand_init(t_pvcompand *x,short initialized); void pvcompand_fftinfo(t_pvcompand *x); void pvcompand_overlap(t_pvcompand *x, t_floatarg f); void pvcompand_winfac(t_pvcompand *x, t_floatarg f); void pvcompand_bypass(t_pvcompand *x, t_floatarg f); void pvcompand_mute(t_pvcompand *x, t_floatarg f); #if MSP void main(void) { setup((t_messlist **)&pvcompand_class, (method)pvcompand_new, (method)pvcompand_free, (short)sizeof(t_pvcompand), 0, A_GIMME, 0); addmess((method)pvcompand_dsp, "dsp", A_CANT, 0); addmess((method)pvcompand_normalize, "normalize", A_LONG, 0); addmess((method)pvcompand_winfac,"winfac", A_FLOAT, 0); addmess((method)pvcompand_overlap,"overlap", A_FLOAT, 0); addmess((method)pvcompand_fftinfo,"fftinfo", 0); addmess((method)pvcompand_bypass,"bypass", A_FLOAT, 0); addmess((method)pvcompand_mute,"mute", A_FLOAT, 0); addmess((method)pvcompand_assist,"assist",A_CANT,0); addfloat((method)pvcompand_float); dsp_initclass(); post("%s %s",OBJECT_NAME,FFTEASE_ANNOUNCEMENT); } #endif #if PD void pvcompand_tilde_setup(void) { pvcompand_class = class_new(gensym("pvcompand~"), (t_newmethod)pvcompand_new, (t_method)pvcompand_free ,sizeof(t_pvcompand), 0,A_GIMME,0); CLASS_MAINSIGNALIN(pvcompand_class, t_pvcompand, x_f); class_addmethod(pvcompand_class,(t_method)pvcompand_dsp,gensym("dsp"),0); class_addmethod(pvcompand_class,(t_method)pvcompand_mute,gensym("mute"),A_FLOAT,0); class_addmethod(pvcompand_class,(t_method)pvcompand_bypass,gensym("bypass"),A_FLOAT,0); class_addmethod(pvcompand_class,(t_method)pvcompand_overlap,gensym("overlap"),A_FLOAT,0); class_addmethod(pvcompand_class,(t_method)pvcompand_winfac,gensym("winfac"),A_FLOAT,0); class_addmethod(pvcompand_class,(t_method)pvcompand_fftinfo,gensym("fftinfo"),0); class_addmethod(pvcompand_class,(t_method)pvcompand_normalize,gensym("normalize"),A_FLOAT,0); post("%s %s",OBJECT_NAME,FFTEASE_ANNOUNCEMENT); } #endif void pvcompand_bypass(t_pvcompand *x, t_floatarg f) { x->bypass = (short)f; } void pvcompand_mute(t_pvcompand *x, t_floatarg f) { x->mute = (short)f; } void pvcompand_free( t_pvcompand *x ){ #if MSP dsp_free( (t_pxobject *) x); #endif freebytes(x->curthresh,0); freebytes(x->atten,0); freebytes(x->thresh,0); freebytes(x->trigland,0); freebytes(x->bitshuffle,0); freebytes(x->Wanal,0); freebytes(x->Wsyn,0); freebytes(x->input,0); freebytes(x->Hwin,0); freebytes(x->buffer,0); freebytes(x->channel,0); freebytes(x->output,0); } void pvcompand_assist (t_pvcompand *x, void *b, long msg, long arg, char *dst) { if (msg==1) { switch (arg) { case 0: sprintf(dst,"(signal) Input"); break; case 1: sprintf(dst,"(float/signal) Threshold"); break; } } else if (msg==2) { sprintf(dst,"(signal) Output"); } } #if MSP void pvcompand_float(t_pvcompand *x, double f) // Look at floats at inlets { int inlet = x->x_obj.z_in; if (inlet == 1) { x->last_max_atten = x->max_atten = f; update_thresholds(x); } } #endif void *pvcompand_new(t_symbol *s, int argc, t_atom *argv) { #if MSP t_pvcompand *x = (t_pvcompand *)newobject(pvcompand_class); dsp_setup((t_pxobject *)x,2); outlet_new((t_pxobject *)x, "signal"); #endif #if PD t_pvcompand *x = (t_pvcompand *)pd_new(pvcompand_class); inlet_new(&x->x_obj, &x->x_obj.ob_pd, gensym("signal"), gensym("signal")); outlet_new(&x->x_obj, gensym("signal")); #endif // INITIALIZATIONS x->D = sys_getblksize(); x->R = sys_getsr(); x->max_atten = atom_getfloatarg(0,argc,argv); x->overlap = atom_getfloatarg(1,argc,argv); x->winfac = atom_getfloatarg(2,argc,argv); if(!x->max_atten) x->max_atten = -6; if(x->D <= 0) x->D = 256; if(x->R <= 0) x->R = 44100; pvcompand_init(x,0); return (x); } void pvcompand_init(t_pvcompand *x,short initialized) { int i; if(!fftease_power_of_two(x->overlap)) x->overlap = 4; if(!fftease_power_of_two(x->winfac)) x->winfac = 1; x->N = x->D * x->overlap; x->Nw = x->N * x->winfac; limit_fftsize(&x->N,&x->Nw,OBJECT_NAME); x->N2 = (x->N)>>1; x->Nw2 = (x->Nw)>>1; x->inCount = -(x->Nw); x->mult = 1. / (float) x->N; if(!initialized){ x->norml = 0; x->mute = 0; x->bypass = 0; x->thresh_interval = 1.0; x->last_max_atten = x->max_atten; x->atten_interval = 2.0 ; x->tstep = 1.0 ; x->gstep = 2.0 ; x->Wanal = (float *) getbytes(MAX_Nw * sizeof(float)); x->Wsyn = (float *) getbytes(MAX_Nw * sizeof(float)); x->Hwin = (float *) getbytes(MAX_Nw * sizeof(float)); x->input = (float *) getbytes(MAX_Nw * sizeof(float) ); x->buffer = (float *) getbytes(MAX_N * sizeof(float) ); x->channel = (float *) getbytes( (MAX_N+2) * sizeof(float) ); x->output = (float *) getbytes(MAX_N * sizeof(float) ); x->bitshuffle = (int *) getbytes(MAX_N * 2 * sizeof( int ) ); x->trigland = (float *) getbytes(MAX_N * 2 * sizeof( float ) ); x->thresh = (float *) getbytes(MAX_N * sizeof(float) ); x->atten = (float *) getbytes(MAX_N * sizeof(float) ); x->curthresh = (float *) getbytes(MAX_N * sizeof(float) ); } memset((char *)x->input,0,x->Nw * sizeof(float)); memset((char *)x->output,0,x->Nw * sizeof(float)); init_rdft( x->N, x->bitshuffle, x->trigland); makewindows( x->Hwin, x->Wanal, x->Wsyn, x->Nw, x->N, x->D); update_thresholds(x); } void update_thresholds( t_pvcompand *x ) { int i; float nowamp = x->max_atten ; float nowthresh = 0.0 ; x->count = 0; if( nowamp < 0.0 ) while( nowamp < 0.0 ){ x->atten[x->count] = pvcompand_ampdb( nowamp ); nowamp += x->gstep ; ++(x->count); if(x->count >= x->N){ error("count exceeds %d",x->N); x->count = x->N - 1; break; } } else if( nowamp > 0.0 ) while( nowamp > 0.0 ){ x->atten[x->count] = pvcompand_ampdb( nowamp ); nowamp -= x->gstep ; ++(x->count); if(x->count >= x->N){ error("count exceeds %d",x->N); x->count = x->N - 1; break; } } for( i = 0; i < x->count; i++){ x->thresh[i] = pvcompand_ampdb( nowthresh ); nowthresh -= x->tstep ; } /* for( i = 0; i < count; i++) fprintf(stderr,"thresh %f gain %f\n",thresh[i], atten[i]); */ } void pvcompand_normalize(t_pvcompand *x, t_floatarg val) { x->norml = val; } t_int *pvcompand_perform(t_int *w) { float sample, outsamp ; int i,j; float maxamp ; float fmult; float cutoff; float avr, new_avr, rescale; t_pvcompand *x = (t_pvcompand *) (w[1]); t_float *in = (t_float *)(w[2]); t_float *in2 = (t_float *)(w[3]); t_float *out = (t_float *)(w[4]); int n = (int)(w[5]); int inCount = x->inCount; float *Wanal = x->Wanal; float *Wsyn = x->Wsyn; float *input = x->input; float *Hwin = x->Hwin; float *buffer = x->buffer; float *channel = x->channel; float *output = x->output; int D = x->D; int I = D; int R = x->R; int Nw = x->Nw; int N = x->N ; int N2 = x-> N2; int Nw2 = x->Nw2; int *bitshuffle = x->bitshuffle; float *trigland = x->trigland; float mult = x->mult; int count = x->count; float *atten = x->atten; float *curthresh = x->curthresh; float *thresh = x->thresh; float max_atten = x->max_atten; if( x->mute ){ while( n-- ){ *out++ = 0.0; } return (w+6); } if( x->bypass ){ while( n-- ){ *out++ = *in++ * 0.5; // gain compensation } return (w+6); } #if MSP if( x->connected[1] ){ max_atten = *in2++ ; if(max_atten != x->last_max_atten) { x->last_max_atten = x->max_atten = max_atten; update_thresholds(x); } } #endif #if PD max_atten = *in2++ ; if(max_atten != x->last_max_atten) { x->last_max_atten = x->max_atten = max_atten; update_thresholds(x); } #endif inCount += D; for ( j = 0 ; j < Nw - D ; j++ ){ input[j] = input[j+D]; } for ( j = Nw - D; j < Nw; j++ ) { input[j] = *in++; } fold( input, Wanal, Nw, buffer, N, inCount ); rdft( N, 1, buffer, bitshuffle, trigland ); leanconvert(buffer, channel, N2); maxamp = 0.; avr = 0; for( i = 0; i < N; i+= 2 ){ avr += channel[i]; if( maxamp < channel[i] ){ maxamp = channel[i] ; } } if(count <= 1){ // post("count too low!"); count = 1; } for( i = 0; i < count; i++ ){ curthresh[i] = thresh[i]*maxamp ; } cutoff = curthresh[count-1]; new_avr = 0; for( i = 0; i < N; i += 2){ if( channel[i] > cutoff ){ j = count-1; while( channel[i] > curthresh[j] ){ j--; if( j < 0 ){ j = 0; break; } } channel[i] *= atten[j]; } new_avr += channel[i] ; } leanunconvert( channel,buffer, N2); rdft( N, -1, buffer, bitshuffle, trigland ); overlapadd( buffer, N, Wsyn, output, Nw, inCount); if( x->norml ) { if( new_avr <= 0 ){ new_avr = .0001; } rescale = avr / new_avr ; mult *= rescale ; } else { mult *= pvcompand_ampdb( max_atten * -.5); ; } for ( j = 0; j < D; j++ ){ *out++ = output[j] * mult; } for ( j = 0; j < Nw - D; j++ ) output[j] = output[j+D]; for ( j = Nw - D; j < Nw; j++ ) output[j] = 0.; /* restore state variables */ x->inCount = inCount % Nw; return (w+6); } float pvcompand_ampdb(float db) { float amp; amp = pow((double)10.0, (double)(db/20.0)) ; return(amp); } void pvcompand_overlap(t_pvcompand *x, t_floatarg f) { int i = (int) f; if(!fftease_power_of_two(i)){ error("%f is not a power of two",f); return; } x->overlap = i; pvcompand_init(x,1); } void pvcompand_winfac(t_pvcompand *x, t_floatarg f) { int i = (int)f; if(!fftease_power_of_two(i)){ error("%f is not a power of two",f); return; } x->winfac = i; pvcompand_init(x,2); } void pvcompand_fftinfo(t_pvcompand *x) { if( ! x->overlap ){ post("zero overlap!"); return; } post("%s: FFT size %d, hopsize %d, windowsize %d", OBJECT_NAME, x->N, x->N/x->overlap, x->Nw); } void pvcompand_dsp(t_pvcompand *x, t_signal **sp, short *count) { long i; #if MSP x->connected[1] = count[1]; #endif if(x->D != sp[0]->s_n || x->R != sp[0]->s_sr ){ x->D = sp[0]->s_n; x->R = sp[0]->s_sr; pvcompand_init(x,1); } dsp_add(pvcompand_perform, 5,x,sp[0]->s_vec, sp[1]->s_vec, sp[2]->s_vec, sp[0]->s_n); }