#include "MSPd.h" #include "fftease.h" #if MSP void *pvharm_class; #endif #if PD static t_class *pvharm_class; #endif #define OBJECT_NAME "pvharm~" typedef struct _pvharm { #if MSP t_pxobject x_obj; #endif #if PD t_object x_obj; float x_f; #endif int R; int N; int N2; int Nw; int Nw2; int D; int i; int inCount; float *Wanal; float *Wsyn; float *input; float *Hwin; float *buffer; float *channel; float *output; // for convert float *c_lastphase_in; // float *c_lastphase_out; float c_fundamental; float c_factor_in; float c_factor_out; float *table; int NP; int L; int first; float Iinv; float ffac; // for oscbank 1 float *lastamp; float *lastfreq; float *index; int lo_bin; int hi_bin; float topfreq; float P; float myPInc; // // for oscbank 2 float *lastamp2; float *lastfreq2; float *index2; int lo_bin2; int hi_bin2; float topfreq2; float P2; float myPInc2; // float synt; float myPI; float TWOmyPI; // for fast fft float mult; float *trigland; int *bitshuffle; short pitch1_connected; short pitch2_connected; short synt_connected; short mute; int vs;//vector size int overlap;//overlap factor int winfac;//window size factor float hifreq;//highest frequency to synthesize float lofreq;//lowest frequency to synthesize } t_pvharm; void *pvharm_new(t_symbol *s, int argc, t_atom *argv); t_int *offset_perform(t_int *w); t_int *pvharm_perform(t_int *w); void pvharm_dsp(t_pvharm *x, t_signal **sp, short *count); void pvharm_assist(t_pvharm *x, void *b, long m, long a, char *s); void pvharm_float(t_pvharm *x, double f); void pvharm_mute(t_pvharm *x, t_floatarg f); void pvharm_init(t_pvharm *x, short initialized); void pvharm_lowfreq(t_pvharm *x, t_floatarg f); void pvharm_highfreq(t_pvharm *x, t_floatarg f); void pvharm_free(t_pvharm *x); void pvharm_fftinfo(t_pvharm *x); void pvharm_overlap(t_pvharm *x, t_floatarg f); void pvharm_winfac(t_pvharm *x, t_floatarg f); #if MSP void main(void) { setup((t_messlist **) &pvharm_class, (method) pvharm_new, (method)pvharm_free, (short)sizeof(t_pvharm), 0, A_GIMME, 0); addmess((method)pvharm_dsp, "dsp", A_CANT, 0); addmess((method)pvharm_assist,"assist",A_CANT,0); addmess((method)pvharm_mute,"mute",A_DEFFLOAT,0); addmess((method)pvharm_lowfreq,"lowfreq",A_FLOAT,0); addmess((method)pvharm_highfreq,"highfreq",A_FLOAT,0); addmess((method)pvharm_overlap,"overlap",A_DEFFLOAT,0); addmess((method)pvharm_winfac,"winfac",A_DEFFLOAT,0); addmess((method)pvharm_fftinfo,"fftinfo",0); addfloat((method)pvharm_float); dsp_initclass(); post("%s %s",OBJECT_NAME,FFTEASE_ANNOUNCEMENT); } #endif #if PD void pvharm_tilde_setup(void) { pvharm_class = class_new(gensym("pvharm~"), (t_newmethod)pvharm_new, (t_method)pvharm_free ,sizeof(t_pvharm), 0,A_GIMME,0); CLASS_MAINSIGNALIN(pvharm_class, t_pvharm, x_f); class_addmethod(pvharm_class, (t_method)pvharm_dsp, gensym("dsp"), 0); class_addmethod(pvharm_class, (t_method)pvharm_assist, gensym("assist"), 0); class_addmethod(pvharm_class, (t_method)pvharm_mute, gensym("mute"), A_DEFFLOAT,0); class_addmethod(pvharm_class, (t_method)pvharm_highfreq, gensym("highfreq"), A_DEFFLOAT,0); class_addmethod(pvharm_class, (t_method)pvharm_lowfreq, gensym("lowfreq"), A_DEFFLOAT,0); class_addmethod(pvharm_class,(t_method)pvharm_overlap,gensym("overlap"),A_FLOAT,0); class_addmethod(pvharm_class,(t_method)pvharm_winfac,gensym("winfac"),A_FLOAT,0); class_addmethod(pvharm_class,(t_method)pvharm_fftinfo,gensym("fftinfo"),0); post("%s %s",OBJECT_NAME,FFTEASE_ANNOUNCEMENT); } #endif void pvharm_free(t_pvharm *x) { #if MSP dsp_free((t_pxobject *) x); #endif freebytes(x->c_lastphase_in,0); freebytes(x->trigland,0); freebytes(x->bitshuffle,0); freebytes(x->Wanal,0); freebytes(x->Wsyn,0); freebytes(x->input,0); freebytes(x->Hwin,0); freebytes(x->buffer,0); freebytes(x->channel,0); freebytes(x->output,0); freebytes(x->lastamp,0); freebytes(x->lastamp2,0); freebytes(x->lastfreq,0); freebytes(x->lastfreq2,0); freebytes(x->index,0); freebytes(x->index2,0); freebytes(x->table,0); } void pvharm_assist (t_pvharm *x, void *b, long msg, long arg, char *dst) { if (msg==1) { switch (arg) { case 0: sprintf(dst,"(signal) Input"); break; case 1: sprintf(dst,"(signal/float) Pitch Multiplier 1"); break; case 2: sprintf(dst,"(signal/float) Pitch Multiplier 2"); break; case 3: sprintf(dst,"(signal/float) Synthesis Threshold"); break; } } else if (msg==2) { sprintf(dst,"(signal) Output"); } } void pvharm_overlap(t_pvharm *x, t_floatarg f) { int i = (int) f; if(!fftease_power_of_two(i)){ error("%f is not a power of two",f); return; } x->overlap = i; pvharm_init(x,1); } void pvharm_winfac(t_pvharm *x, t_floatarg f) { int i = (int)f; if(!fftease_power_of_two(i)){ error("%f is not a power of two",f); return; } x->winfac = i; pvharm_init(x,2); } void pvharm_fftinfo(t_pvharm *x) { if( ! x->overlap ){ post("zero overlap!"); return; } post("%s: FFT size %d, hopsize %d, windowsize %d", OBJECT_NAME, x->N, x->N/x->overlap, x->Nw); } void pvharm_highfreq(t_pvharm *x, t_floatarg f) { float curfreq; if(f < x->lofreq){ error("current minimum is %f",x->lofreq); return; } if(f > x->R/2 ){ f = x->R/2; } x->hifreq = f; x->hi_bin = 1; curfreq = 0; while(curfreq < x->hifreq) { ++(x->hi_bin); curfreq += x->c_fundamental; } } void pvharm_lowfreq(t_pvharm *x, t_floatarg f) { float curfreq; if(f > x->hifreq){ error("current maximum is %f",x->lofreq); return; } if(f < 0 ){ f = 0; } x->lofreq = f; x->lo_bin = 0; curfreq = 0; while( curfreq < x->lofreq ) { ++(x->lo_bin); curfreq += x->c_fundamental ; } } void *pvharm_new(t_symbol *s, int argc, t_atom *argv) { // int i; #if MSP t_pvharm *x = (t_pvharm *)newobject(pvharm_class); dsp_setup((t_pxobject *)x,4); outlet_new((t_pxobject *)x, "signal"); #endif #if PD t_pvharm *x = (t_pvharm *)pd_new(pvharm_class); inlet_new(&x->x_obj, &x->x_obj.ob_pd,gensym("signal"), gensym("signal")); inlet_new(&x->x_obj, &x->x_obj.ob_pd,gensym("signal"), gensym("signal")); inlet_new(&x->x_obj, &x->x_obj.ob_pd,gensym("signal"), gensym("signal")); outlet_new(&x->x_obj, gensym("signal")); #endif x->vs = sys_getblksize(); x->R = sys_getsr(); x->lofreq = atom_getfloatarg(0,argc,argv); x->hifreq = atom_getfloatarg(1,argc,argv); x->overlap = atom_getfloatarg(2,argc,argv); x->winfac = atom_getfloatarg(3,argc,argv); if(x->lofreq <0 || x->lofreq> 22050) x->lofreq = 0; if(x->hifreq <50 || x->hifreq> 22050) x->hifreq = 4000; if(!fftease_power_of_two(x->overlap)) x->overlap = 4; if(!fftease_power_of_two(x->winfac)) x->winfac = 2; pvharm_init(x,0); return (x); } void pvharm_init(t_pvharm *x, short initialized) { int i; float curfreq; x->D = x->vs; x->N = x->D * x->overlap; x->Nw = x->N * x->winfac; limit_fftsize(&x->N,&x->Nw,OBJECT_NAME); x->N2 = (x->N)>>1; x->Nw2 = (x->Nw)>>1; x->inCount = -(x->Nw); x->mult = 1. / (float) x->N; x->Iinv = 1./x->D; x->c_fundamental = (float) x->R/(float)((x->N2)<<1); x->c_factor_in = (float) x->R/((float)x->D * TWOPI); x->c_factor_out = TWOPI * (float) x->D / (float) x->R; if(!initialized){ x->P = .5 ; // for testing purposes x->P2 = .6666666666 ; // for testing purposes x->L = 8192 ; x->synt = .00005; x->mute = 0; x->Wanal = (float *) getbytes( (MAX_Nw) * sizeof(float)); x->Wsyn = (float *) getbytes( (MAX_Nw) * sizeof(float)); x->Hwin = (float *) getbytes( (MAX_Nw) * sizeof(float)); x->input = (float *) getbytes( MAX_Nw * sizeof(float) ); x->output = (float *) getbytes( MAX_Nw * sizeof(float) ); x->buffer = (float *) getbytes( MAX_N * sizeof(float) ); x->channel = (float *) getbytes( (MAX_N+2) * sizeof(float) ); x->bitshuffle = (int *) getbytes( MAX_N * 2 * sizeof( int ) ); x->trigland = (float *) getbytes( MAX_N * 2 * sizeof( float ) ); x->lastamp = (float *) getbytes((MAX_N+1) * sizeof(float)); x->lastfreq = (float *) getbytes((MAX_N+1) * sizeof(float)); x->lastamp2 = (float *) getbytes((MAX_N+1) * sizeof(float)); x->lastfreq2 = (float *) getbytes((MAX_N+1) * sizeof(float)); x->index = (float *) getbytes((MAX_N+1) * sizeof(float)); x->index2 = (float *) getbytes((MAX_N+1) * sizeof(float)); x->table = (float *) getbytes(x->L * sizeof(float)); x->c_lastphase_in = (float *) getbytes((MAX_N2+1) * sizeof(float)); } memset((char *)x->input,0,x->Nw * sizeof(float)); memset((char *)x->output,0,x->Nw * sizeof(float)); memset((char *)x->c_lastphase_in,0,(x->N2+1) * sizeof(float)); memset((char *)x->lastamp,0,(x->N+1) * sizeof(float)); memset((char *)x->lastfreq,0,(x->N+1) * sizeof(float)); memset((char *)x->lastamp2,0,(x->N+1) * sizeof(float)); memset((char *)x->lastfreq2,0,(x->N+1) * sizeof(float)); memset((char *)x->index,0,(x->N+1) * sizeof(float)); memset((char *)x->index2,0,(x->N+1) * sizeof(float)); x->myPInc = x->P * x->L/x->R; x->myPInc2 = x->P2 * x->L/x->R; x->ffac = x->P * PI/x->N; if(x->hifreq < x->c_fundamental) { x->hifreq = 3000.0 ; } x->hi_bin = 1; curfreq = 0; while(curfreq < x->hifreq) { ++(x->hi_bin); curfreq += x->c_fundamental ; } if( x->hi_bin >= x->N2 ){ x->hi_bin = x->N2 - 1; } x->lo_bin = 0; curfreq = 0; while(curfreq < x->lofreq) { ++(x->lo_bin); curfreq += x->c_fundamental ; } for (i = 0; i < x->L; i++) { x->table[i] = (float) x->N * cos((float)i * TWOPI / (float)x->L); } init_rdft( x->N, x->bitshuffle, x->trigland); makehanning( x->Hwin, x->Wanal, x->Wsyn, x->Nw, x->N, x->D, 0); } t_int *pvharm_perform(t_int *w) { int i,j, in,on; int amp,freq,chan; int breaker = 0; float a,ainc,f,finc,address; float tmpfreq; t_pvharm *x = (t_pvharm *) (w[1]); t_float *inbuf = (t_float *)(w[2]); t_float *in2 = (t_float *)(w[3]); t_float *in3 = (t_float *)(w[4]); t_float *in4 = (t_float *)(w[5]); t_float *outbuf = (t_float *)(w[6]); t_int n = w[7]; int D = x->D; int I = D; int R = x->R; int Nw = x->Nw; int N = x->N ; int N2 = x-> N2; int Nw2 = x->Nw2; int L = x->L; float fundamental = x->c_fundamental; float factor_in = x->c_factor_in; float factor_out = x->c_factor_out; int *bitshuffle = x->bitshuffle; float *trigland = x->trigland; float mult = x->mult; float synt = x->synt; float P = x->P; float P2 = x->P2; float Iinv = x->Iinv; float myPInc = x->myPInc; float myPInc2 = x->myPInc2; float *table = x->table; float *lastamp = x->lastamp; float *lastamp2 = x->lastamp2; float *lastfreq = x->lastfreq; float *lastfreq2 = x->lastfreq2; float *bindex = x->index; float *bindex2 = x->index2; float *lastphase_in = x->c_lastphase_in; // float *lastphase_out = x->c_lastphase_out; float *Wanal = x->Wanal; float *Wsyn = x->Wsyn; float *input = x->input; float *Hwin = x->Hwin; float *buffer = x->buffer; float *channel = x->channel; float *output = x->output; int hi_bin = x->hi_bin; int lo_bin = x->lo_bin; in = on = x->inCount ; if( x->mute ){ for ( j = 0; j < n; j++ ){ *outbuf++ = 0.0; } return (w+8); } if( x->synt_connected ){ synt = *in4++; } if( x->pitch1_connected) { P = *in2++; myPInc = P * x->L/x->R; } if( x->pitch2_connected) { P2 = *in3++; myPInc2 = P2 * x->L/x->R; } in += D; on += I; for ( j = 0 ; j < (Nw - D) ; j++ ){ input[j] = input[j+D]; } for ( j = (Nw-D), i = 0 ; j < Nw; j++, i++ ) { input[j] = *inbuf++; } fold( input, Wanal, Nw, buffer, N, in ); rdft( N, 1, buffer, bitshuffle, trigland ); convert( buffer, channel, N2, lastphase_in, fundamental, factor_in ); for ( chan = lo_bin; chan < hi_bin; chan++ ) { freq = ( amp = ( chan << 1 ) ) + 1; if ( channel[amp] < synt ){ breaker = 1; } if( breaker ) { breaker = 0 ; } else { tmpfreq = channel[freq] * myPInc; finc = ( tmpfreq - ( f = lastfreq[chan] ) )*Iinv; ainc = ( channel[amp] - ( a = lastamp[chan] ) )*Iinv; address = bindex[chan]; for ( n = 0; n < I; n++ ) { output[n] += a*table[ (int) address ]; address += f; while ( address >= L ) address -= L; while ( address < 0 ) address += L; a += ainc; f += finc; } lastfreq[chan] = tmpfreq; lastamp[chan] = channel[amp]; bindex[chan] = address; // OSC BANK 2 tmpfreq = channel[freq] * myPInc2; finc = ( tmpfreq - ( f = lastfreq2[chan] ) )*Iinv; ainc = ( channel[amp] - ( a = lastamp2[chan] ) )*Iinv; address = bindex2[chan]; for ( n = 0; n < I; n++ ) { output[n] += a*table[ (int) address ]; address += f; while ( address >= L ) address -= L; while ( address < 0 ) address += L; a += ainc; f += finc; } lastfreq2[chan] = tmpfreq; lastamp2[chan] = channel[amp]; bindex2[chan] = address; } } for ( j = 0; j < D; j++ ){ *outbuf++ = output[j] * mult; } for ( j = 0; j < Nw - D; j++ ){ output[j] = output[j+D]; } for ( j = Nw - D; j < Nw; j++ ){ output[j] = 0.; } x->P = P; x->P2 = P2; x->inCount = in; return (w+8); } #if MSP void pvharm_float(t_pvharm *x, double f) // Look at floats at inlets { int inlet = x->x_obj.z_in; if (inlet == 1) { x->P = f; x->myPInc = x->P*x->L/x->R; } else if (inlet == 2) { x->P2 = f; x->myPInc2 = x->P2*x->L/x->R; } else if (inlet == 3) { x->synt = f; } } #endif void pvharm_mute(t_pvharm *x, t_floatarg state) { x->mute = (short)state; } void pvharm_dsp(t_pvharm *x, t_signal **sp, short *count) { #if MSP x->pitch1_connected = count[1]; x->pitch2_connected = count[2]; x->synt_connected = count[3]; #endif #if PD x->pitch1_connected = 1; x->pitch2_connected = 1; x->synt_connected = 1; #endif if(x->vs != sp[0]->s_n || x->R != sp[0]->s_sr){ x->vs = sp[0]->s_n; x->R = sp[0]->s_sr; pvharm_init(x,1); } // post("pvharm: sampling rate is %f",sp[0]->s_sr ); dsp_add(pvharm_perform, 7, x, sp[0]->s_vec, sp[1]->s_vec, sp[2]->s_vec, sp[3]->s_vec, sp[4]->s_vec, sp[0]->s_n); }