#include "MSPd.h" #include "fftease.h" #if MSP void *shapee_class; #endif #if PD static t_class *shapee_class; #endif #define OBJECT_NAME "shapee~" typedef struct _shapee { #if MSP t_pxobject x_obj; #endif #if PD t_object x_obj; float x_f; #endif int R; int N; int N2; int Nw; int Nw2; int D; int i; int inCount; int widthConnected; int *bitshuffle; float shapeWidth; float *Wanal; float *Wsyn; float *inputOne; float *inputTwo; float *Hwin; float *bufferOne; float *bufferTwo; float *channelOne; float *channelTwo; float *output; float mult; float *trigland; int overlap;//overlap factor int winfac;// window factor int vs;//last measurement of vector size short mute; } t_shapee; /* msp function prototypes */ void *shapee_new(t_symbol *s, int argc, t_atom *argv); t_int *shapee_perform(t_int *w); void shapee_dsp(t_shapee *x, t_signal **sp, short *count); void shapee_float(t_shapee *x, double myFloat); void shapee_assist(t_shapee *x, void *b, long m, long a, char *s); void shapee_init(t_shapee *x, short initialized); void shapee_mute(t_shapee *x, t_floatarg state); void shapee_free(t_shapee *x); void shapee_overlap(t_shapee *x, t_floatarg o); void shapee_winfac(t_shapee *x, t_floatarg wf); void shapee_fftinfo(t_shapee *x); /* first calling */ /* float input handling routine for shape width */ #if MSP void shapee_float( t_shapee *x, double myFloat ) { if ( x->x_obj.z_in == 2 ) { if ( myFloat >= 1. && myFloat <= (double) x->N ) x->shapeWidth = (float)myFloat; } } void main(void) { setup( (t_messlist **) &shapee_class, (method) shapee_new, (method) shapee_free, (short) sizeof(t_shapee), 0, A_GIMME, 0); addmess((method)shapee_dsp, "dsp", A_CANT, 0); addmess((method)shapee_assist,"assist",A_CANT,0); addfloat((method)shapee_float); addmess((method)shapee_mute,"mute",A_FLOAT,0); addmess((method)shapee_overlap,"overlap",A_FLOAT,0); addmess((method)shapee_winfac,"winfac",A_FLOAT,0); addmess((method)shapee_fftinfo,"fftinfo",0); dsp_initclass(); post("%s %s",OBJECT_NAME,FFTEASE_ANNOUNCEMENT); } #endif #if PD void shapee_tilde_setup(void) { shapee_class = class_new(gensym("shapee~"), (t_newmethod)shapee_new, (t_method)shapee_free ,sizeof(t_shapee), 0,A_GIMME,0); CLASS_MAINSIGNALIN(shapee_class, t_shapee, x_f); class_addmethod(shapee_class, (t_method)shapee_dsp, gensym("dsp"), 0); class_addmethod(shapee_class, (t_method)shapee_mute, gensym("mute"), A_DEFFLOAT,0); class_addmethod(shapee_class, (t_method)shapee_overlap, gensym("overlap"), A_DEFFLOAT,0); class_addmethod(shapee_class, (t_method)shapee_winfac, gensym("winfac"), A_DEFFLOAT,0); class_addmethod(shapee_class, (t_method)shapee_fftinfo, gensym("fftinfo"),0); post("%s %s",OBJECT_NAME,FFTEASE_ANNOUNCEMENT); } #endif /* diagnostic messages for Max */ void shapee_assist (t_shapee *x, void *b, long msg, long arg, char *dst) { if (msg == 1) { switch (arg) { case 0: sprintf(dst,"(signal) Frequency Reference");break; case 1: sprintf(dst,"(signal) Amplitude Reference");break; case 2: sprintf(dst,"(signal/float) Shape Width"); break; } } else { if (msg == 2) sprintf(dst,"(signal) Output"); } } void *shapee_new(t_symbol *s, int argc, t_atom *argv) { #if MSP t_shapee *x = (t_shapee *) newobject(shapee_class); dsp_setup((t_pxobject *)x, 3); outlet_new((t_pxobject *)x, "signal"); #endif #if PD t_shapee *x = (t_shapee *)pd_new(shapee_class); inlet_new(&x->x_obj, &x->x_obj.ob_pd,gensym("signal"), gensym("signal")); inlet_new(&x->x_obj, &x->x_obj.ob_pd,gensym("signal"), gensym("signal")); outlet_new(&x->x_obj, gensym("signal")); #endif /* INITIALIZATIONS */ x->overlap = atom_getfloatarg(0,argc,argv); x->winfac = atom_getfloatarg(1,argc,argv); if(!x->winfac) x->winfac = 1; if(!x->overlap) x->overlap = 4; x->vs = sys_getblksize(); x->R = sys_getsr(); shapee_init(x,0); return (x); } void shapee_init(t_shapee *x, short initialized) { int i; x->D = x->vs; x->N = x->vs * x->overlap; x->Nw = x->N * x->winfac; limit_fftsize(&x->N,&x->Nw,OBJECT_NAME); x->N2 = (x->N)>>1; x->Nw2 = (x->Nw)>>1; x->inCount = -(x->Nw); x->mult = 1. / (float) x->N; if(!initialized){ x->mute = 0; x->Wanal = (float *) getbytes( MAX_Nw * sizeof(float) ); x->Wsyn = (float *) getbytes( MAX_Nw * sizeof(float) ); x->Hwin = (float *) getbytes( MAX_Nw * sizeof(float) ); x->inputOne = (float *) getbytes( MAX_Nw * sizeof(float) ); x->inputTwo = (float *) getbytes( MAX_Nw * sizeof(float) ); x->bufferOne = (float *) getbytes( MAX_N * sizeof(float) ); x->bufferTwo = (float *) getbytes( MAX_N * sizeof(float) ); x->channelOne = (float *) getbytes( (MAX_N+2) * sizeof(float) ); x->channelTwo = (float *) getbytes( (MAX_N+2) * sizeof(float) ); x->output = (float *) getbytes( MAX_Nw * sizeof(float) ); x->bitshuffle = (int *) getbytes( MAX_N * 2 * sizeof( int ) ); x->trigland = (float *) getbytes( MAX_N * 2 * sizeof( float ) ); } memset((char *)x->inputOne,0,x->Nw * sizeof(float)); memset((char *)x->inputTwo,0,x->Nw * sizeof(float)); memset((char *)x->output,0,x->Nw * sizeof(float)); init_rdft(x->N, x->bitshuffle, x->trigland); makehanning(x->Hwin, x->Wanal, x->Wsyn, x->Nw, x->N, x->D, 1);// wants an ODD window } void shapee_fftinfo(t_shapee *x) { if( ! x->overlap ){ post("zero overlap!"); return; } post("%s: FFT size %d, hopsize %d, windowsize %d", OBJECT_NAME, x->N, x->N/x->overlap, x->Nw); } void shapee_mute(t_shapee *x, t_floatarg state) { x->mute = (short)state; } void shapee_overlap(t_shapee *x, t_floatarg o) { int test = (int) o; if(!fftease_power_of_two(test)){ post("%d is not a power of two",test); return; } x->overlap = test; shapee_init(x,1); } void shapee_winfac(t_shapee *x, t_floatarg wf) { int test = (int) wf; if(!fftease_power_of_two(test)){ post("%d is not a power of two",test); return; } x->winfac = test; shapee_init(x,1); } t_int *shapee_perform(t_int *w) { int n, i,j, inCount, R, N, N2, D, Nw, invert = 1, shapeWidth, remainingWidth, even, odd, *bitshuffle; float maxamp, threshMult = 1., mult, a1, b1, a2, b2, *inputOne, *inputTwo, *bufferOne, *bufferTwo, *output, *Wanal, *Wsyn, *channelOne, *channelTwo, *trigland; t_float *inOne, *inTwo, *inShape, *out; /* get our inlets and outlets */ t_shapee *x = (t_shapee *) (w[1]); inOne = (t_float *) (w[2]); inTwo = (t_float *) (w[3]); inShape = (t_float *) (w[4]); out = (t_float *)(w[5]); n = (t_int) (w[6]); /* get our shapeWidth -- from either a signal our float input */ #if MSP shapeWidth = x->widthConnected ? (int) *inShape : (int) x->shapeWidth; #endif #if PD shapeWidth = (int) *inShape; #endif /* dereference structure */ if(x->mute){ while(n--) *out++ = 0.0; return w+7; } inputOne = x->inputOne; inputTwo = x->inputTwo; bufferOne = x->bufferOne; bufferTwo = x->bufferTwo; inCount = x->inCount; R = x->R; N = x->N; N2 = x->N2; D = x->D; Nw = x->Nw; Wanal = x->Wanal; Wsyn = x->Wsyn; output = x->output; channelOne = x->channelOne; channelTwo = x->channelTwo; bitshuffle = x->bitshuffle; trigland = x->trigland; mult = x->mult; if(shapeWidth < 1 || shapeWidth > N2) shapeWidth = 1; inCount += D; for ( j = 0 ; j < Nw - D ; j++ ) { inputOne[j] = inputOne[j+D]; inputTwo[j] = inputTwo[j+D]; } for ( j = Nw - D; j < Nw; j++ ) { inputOne[j] = *inOne++; inputTwo[j] = *inTwo++; } /* apply hamming window and fold our window buffer into the fft buffer */ fold( inputOne, Wanal, Nw, bufferOne, N, inCount ); fold( inputTwo, Wanal, Nw, bufferTwo, N, inCount ); /* do an fft */ rdft( N, 1, bufferOne, bitshuffle, trigland ); rdft( N, 1, bufferTwo, bitshuffle, trigland ); /* convert to polar coordinates from complex values */ for ( i = 0; i <= N2; i++ ) { odd = ( even = i<<1 ) + 1; a1 = ( i == N2 ? *(bufferOne+1) : *(bufferOne+even) ); b1 = ( i == 0 || i == N2 ? 0. : *(bufferOne+odd) ); a2 = ( i == N2 ? *(bufferTwo+1) : *(bufferTwo+even) ); b2 = ( i == 0 || i == N2 ? 0. : *(bufferTwo+odd) ); /* replace signal one's phases with those of signal two */ *(channelOne+even) = hypot( a1, b1 ); *(channelOne+odd) = -atan2( b1, a1 ); *(channelTwo+even) = hypot( a2, b2 ); *(channelTwo+odd) = -atan2( b2, a2 ); } /* constrain our shapeWidth value */ if ( shapeWidth > N2 ) shapeWidth = N2; if ( shapeWidth < 1 ) shapeWidth = 1; /* lets just shape the entire signal by the shape width */ for ( i=0; i < N; i += shapeWidth << 1 ) { float amplSum = 0., freqSum = 0., factor; for ( j = 0; j < shapeWidth << 1; j += 2 ) { amplSum += *(channelTwo+i+j); freqSum += *(channelOne+i+j); } if(freqSum <= 0.001){ freqSum = 1.0; } if (amplSum < 0.000000001) factor = 0.000000001; else factor = amplSum / freqSum; for ( j = 0; j < shapeWidth * 2; j += 2 ) *(channelOne+i+j) *= factor; } /* copy remaining magnitudes */ if ( (remainingWidth = N2 % shapeWidth) ) { int bindex = (N2 - remainingWidth) << 1; float amplSum = 0., freqSum = 0., factor; for ( j = 0; j < remainingWidth * 2; j += 2 ) { amplSum += *(channelTwo+bindex+j); freqSum += *(channelOne+bindex+j); } if(freqSum <= 0.00001){ freqSum = 1.0; } if (amplSum < 0.000000001) factor = 0.000000001; else factor = amplSum / freqSum; for ( j = 0; j < remainingWidth * 2; j += 2 ) *(channelOne+bindex+j) *= factor; } /* convert from polar to cartesian */ for ( i = 0; i <= N2; i++ ) { odd = ( even = i<<1 ) + 1; *(bufferOne+even) = *(channelOne+even) * cos( *(channelOne+odd) ); if ( i != N2 ) *(bufferOne+odd) = (*(channelOne+even)) * -sin( *(channelOne+odd) ); } /* do an inverse fft */ rdft( N, -1, bufferOne, bitshuffle, trigland ); /* dewindow our result */ overlapadd( bufferOne, N, Wsyn, output, Nw, inCount); /* set our output and adjust our retaining output buffer */ for ( j = 0; j < D; j++ ) *out++ = output[j] * mult; for ( j = 0; j < Nw - D; j++ ) output[j] = output[j+D]; for ( j = Nw - D; j < Nw; j++ ) output[j] = 0.; /* restore state variables */ x->inCount = inCount % Nw; return (w+7); } void shapee_free( t_shapee *x ) { #if MSP dsp_free( (t_pxobject *) x); #endif freebytes(x->trigland,0); freebytes(x->bitshuffle,0); freebytes(x->Wanal,0); freebytes(x->Wsyn,0); freebytes(x->Hwin,0); freebytes(x->inputOne,0); freebytes(x->inputTwo,0); freebytes(x->bufferOne,0); freebytes(x->bufferTwo,0); freebytes(x->channelOne,0); freebytes(x->channelTwo,0); freebytes(x->output,0); } void shapee_dsp(t_shapee *x, t_signal **sp, short *count) { #if MSP x->widthConnected = count[2]; #endif if(x->vs != sp[0]->s_n || x->R != sp[0]->s_sr){ x->vs = sp[0]->s_n; x->R = sp[0]->s_sr; shapee_init(x,1); } dsp_add(shapee_perform, 6, x, sp[0]->s_vec, sp[1]->s_vec, sp[2]->s_vec, sp[3]->s_vec, sp[0]->s_n); }