#include "MSPd.h" #include "fftease.h" #if MSP void *thresher_class; #endif #if PD static t_class *thresher_class; #endif #define OBJECT_NAME "thresher~" #define DEFAULT_HOLD (40.0) typedef struct _thresher { #if MSP t_pxobject x_obj; #endif #if PD t_object x_obj; float x_f; #endif int R; int N; int N2; int Nw; int Nw2; int D; int i; int in_count; float *Wanal; float *Wsyn; float *input; float *Hwin; // float *winput; float *buffer; float *channel; float *output; /* thresher vars */ float move_threshold; float *composite_frame ; int *frames_left; int max_hold_frames; float max_hold_time; int first_frame; float damping_factor ; short thresh_connected; short damping_connected; // for convert float *c_lastphase_in; float *c_lastphase_out; float c_fundamental; float c_factor_in; float c_factor_out; // for fast fft float mult; float *trigland; int *bitshuffle; short mute; short bypass; int winfac; int overlap; float tadv; } t_thresher; void *thresher_new(t_symbol *s, int argc, t_atom *argv); t_int *offset_perform(t_int *w); t_int *thresher_perform(t_int *w); void thresher_dsp(t_thresher *x, t_signal **sp, short *count); void thresher_assist(t_thresher *x, void *b, long m, long a, char *s); void thresher_float(t_thresher *x, double f); void thresher_mute(t_thresher *x, t_floatarg f); void thresher_bypass(t_thresher *x, t_floatarg f); void thresher_free( t_thresher *x ); void thresher_overlap(t_thresher *x, t_floatarg f); void thresher_winfac(t_thresher *x, t_floatarg f); void thresher_fftinfo(t_thresher *x); void thresher_init(t_thresher *x, short initialized); #if MSP void main(void) { setup((t_messlist **)&thresher_class, (method)thresher_new, (method)thresher_free, (short)sizeof(t_thresher), 0L, A_GIMME, 0); addmess((method)thresher_dsp, "dsp", A_CANT, 0); addmess((method)thresher_assist,"assist",A_CANT,0); addmess((method)thresher_mute,"mute",A_FLOAT,0); addmess((method)thresher_bypass,"bypass",A_FLOAT,0); addmess((method)thresher_overlap,"overlap",A_DEFFLOAT,0); addmess((method)thresher_winfac,"winfac",A_DEFFLOAT,0); addmess((method)thresher_fftinfo,"fftinfo",0); addfloat((method)thresher_float); dsp_initclass(); post("%s %s",OBJECT_NAME,FFTEASE_ANNOUNCEMENT); } #endif #if PD void thresher_tilde_setup(void) { thresher_class = class_new(gensym("thresher~"), (t_newmethod)thresher_new, (t_method)thresher_free ,sizeof(t_thresher), 0,A_GIMME,0); CLASS_MAINSIGNALIN(thresher_class, t_thresher, x_f ); class_addmethod(thresher_class, (t_method)thresher_dsp, gensym("dsp"), 0); class_addmethod(thresher_class, (t_method)thresher_mute, gensym("mute"), A_DEFFLOAT,0); class_addmethod(thresher_class, (t_method)thresher_bypass, gensym("bypass"), A_DEFFLOAT,0); class_addmethod(thresher_class, (t_method)thresher_assist, gensym("assist"), 0); class_addmethod(thresher_class,(t_method)thresher_overlap,gensym("overlap"),A_FLOAT,0); class_addmethod(thresher_class,(t_method)thresher_winfac,gensym("winfac"),A_FLOAT,0); class_addmethod(thresher_class,(t_method)thresher_fftinfo,gensym("fftinfo"),0); post("%s %s",OBJECT_NAME,FFTEASE_ANNOUNCEMENT); } #endif void thresher_overlap(t_thresher *x, t_floatarg f) { int i = (int) f; if(!fftease_power_of_two(i)){ error("%f is not a power of two",f); return; } x->overlap = i; thresher_init(x,1); } void thresher_winfac(t_thresher *x, t_floatarg f) { int i = (int)f; if(!fftease_power_of_two(i)){ error("%f is not a power of two",f); return; } x->winfac = i; thresher_init(x,2); } void thresher_fftinfo(t_thresher *x) { if( ! x->overlap ){ post("zero overlap!"); return; } post("%s: FFT size %d, hopsize %d, windowsize %d", OBJECT_NAME, x->N, x->N/x->overlap, x->Nw); } void thresher_free(t_thresher *x){ #if MSP dsp_free( (t_pxobject *) x); #endif freebytes(x->c_lastphase_in,0); freebytes(x->c_lastphase_out,0); freebytes(x->trigland,0); freebytes(x->bitshuffle,0); freebytes(x->Wanal,0); freebytes(x->Wsyn,0); freebytes(x->input,0); freebytes(x->Hwin,0); freebytes(x->buffer,0); freebytes(x->channel,0); freebytes(x->output,0); freebytes(x->composite_frame,0); freebytes(x->frames_left,0); } void thresher_mute(t_thresher *x, t_floatarg f){ x->mute = (short)f; } void thresher_bypass(t_thresher *x, t_floatarg f){ x->bypass = (short)f; } void thresher_assist (t_thresher *x, void *b, long msg, long arg, char *dst) { if (msg==1) { switch (arg) { case 0: sprintf(dst,"(signal) Input"); break; case 1: sprintf(dst,"(signal/float) Threshold"); break; case 2: sprintf(dst,"(signal/float) Damping Factor"); break; } } else if (msg==2) { sprintf(dst,"(signal) Output"); } } void *thresher_new(t_symbol *s, int argc, t_atom *argv) { #if MSP t_thresher *x = (t_thresher *)newobject(thresher_class); dsp_setup((t_pxobject *)x,3); outlet_new((t_pxobject *)x, "signal"); #endif #if PD t_thresher *x = (t_thresher *)pd_new(thresher_class); inlet_new(&x->x_obj, &x->x_obj.ob_pd, gensym("signal"), gensym("signal")); inlet_new(&x->x_obj, &x->x_obj.ob_pd, gensym("signal"), gensym("signal")); outlet_new(&x->x_obj, gensym("signal")); #endif x->move_threshold = atom_getfloatarg(0, argc, argv); x->damping_factor = atom_getfloatarg(1, argc, argv); x->overlap = atom_getfloatarg( 2, argc, argv ); x->winfac = atom_getfloatarg( 3, argc, argv ); // post("thresh %f damper %f overlap %d winfac %d", x->move_threshold, x->damping_factor, x->overlap, x->winfac); /* if overlap is zero we crash so should protect against bad input parameters*/ x->D = sys_getblksize(); x->R = sys_getsr(); thresher_init(x,0); return (x); } void thresher_init(t_thresher *x, short initialized) { int i; if(!x->D) x->D = 256; if(!x->R) x->R = 44100; if(!fftease_power_of_two(x->overlap) ) x->overlap = 4; if(!fftease_power_of_two(x->winfac) ) x->winfac = 1; x->N = x->D * x->overlap; x->Nw = x->N * x->winfac; limit_fftsize(&x->N,&x->Nw,OBJECT_NAME); x->N2 = (x->N)>>1; x->Nw2 = (x->Nw)>>1; x->in_count = -(x->Nw); x->mult = 1. / (float) x->N; x->tadv = (float) x->D / (float) x->R ; if(!initialized){ x->mute = 0; x->bypass = 0; if(!x->damping_factor){ x->damping_factor = .95; } if(!x->move_threshold){ x->move_threshold = .00001 ; } x->first_frame = 1; x->max_hold_time = DEFAULT_HOLD ; x->max_hold_frames = x->max_hold_time / x->tadv; x->c_fundamental = (float) x->R/( (x->N2)<<1 ); x->c_factor_in = (float) x->R/((float)x->D * TWOPI); x->c_factor_out = TWOPI * (float) x->D / (float) x->R; x->Wanal = (float *) getbytes( (MAX_Nw) * sizeof(float)); x->Wsyn = (float *) getbytes( (MAX_Nw) * sizeof(float)); x->Hwin = (float *) getbytes( (MAX_Nw) * sizeof(float)); x->input = (float *) getbytes( MAX_Nw * sizeof(float) ); x->output = (float *) getbytes( MAX_Nw * sizeof(float) ); x->buffer = (float *) getbytes( MAX_N * sizeof(float) ); x->channel = (float *) getbytes( (MAX_N+2) * sizeof(float) ); x->bitshuffle = (int *) getbytes( MAX_N * 2 * sizeof( int ) ); x->trigland = (float *) getbytes( MAX_N * 2 * sizeof( float ) ); x->c_lastphase_in = (float *) getbytes( (MAX_N2+1) * sizeof(float) ); x->c_lastphase_out = (float *) getbytes( (MAX_N2+1) * sizeof(float) ); x->composite_frame = (float *) getbytes( (MAX_N+2) * sizeof(float) ); x->frames_left = (int *) getbytes( (MAX_N+2) * sizeof(int) ); } memset((char *)x->input,0,x->Nw * sizeof(float)); memset((char *)x->output,0,x->Nw * sizeof(float)); memset((char *)x->c_lastphase_in,0,(x->N2+1) * sizeof(float)); memset((char *)x->c_lastphase_out,0,(x->N2+1) * sizeof(float)); memset((char *)x->frames_left,0,(x->N+2) * sizeof(float)); init_rdft(x->N, x->bitshuffle, x->trigland); makehanning(x->Hwin, x->Wanal, x->Wsyn, x->Nw, x->N, x->D, 0); } t_int *thresher_perform(t_int *w) { float sample, outsamp ; int i,j; t_thresher *x = (t_thresher *) (w[1]); float *in = (t_float *)(w[2]); float *inthresh = (t_float *)(w[3]); float *damping = (t_float *)(w[4]); float *out = (t_float *)(w[5]); int n = (int)(w[6]); float *input = x->input; float *output = x->output; float *buffer = x->buffer; float *Wanal = x->Wanal; float *Wsyn = x->Wsyn; float *channel = x->channel; float damping_factor = x->damping_factor; int max_hold_frames = x->max_hold_frames; int *frames_left = x->frames_left; float *composite_frame = x->composite_frame; float *c_lastphase_in = x->c_lastphase_in; float *c_lastphase_out = x->c_lastphase_out; float c_fundamental = x->c_fundamental; float c_factor_in = x->c_factor_in; float c_factor_out = x->c_factor_out; int *bitshuffle = x->bitshuffle; float *trigland = x->trigland; float mult = x->mult; int in_count = x->in_count; int R = x->R; int N = x->N; int N2 = x->N2; int D = x->D; int Nw = x->Nw; float move_threshold = x->move_threshold; if( x->mute ) { for( j = 0; j < D; j++) { *out++ = 0.0 ; } return (w+7); } if ( x->bypass ) { for( j = 0; j < D; j++) { *out++ = *in++ ; } return (w+7); } if( x->thresh_connected ) { move_threshold = *inthresh ; } if( x->damping_connected ) { damping_factor = *damping ; } in_count += D; for ( j = 0 ; j < Nw - D ; j++ ) input[j] = input[j+D]; for ( j = Nw - D; j < Nw; j++ ) { input[j] = *in++; } fold( input, Wanal, Nw, buffer, N, in_count ); rdft( N, 1, buffer, bitshuffle, trigland ); convert( buffer, channel, N2, c_lastphase_in, c_fundamental, c_factor_in ); if( x->first_frame ){ for ( i = 0; i < N+2; i++ ){ composite_frame[i] = channel[i]; frames_left[i] = max_hold_frames; } x->first_frame = 0; } else { for( i = 0; i < N+2; i += 2 ){ if(fabs( composite_frame[i] - channel[i] ) > move_threshold || frames_left[i] <= 0 ){ composite_frame[i] = channel[i]; composite_frame[i+1] = channel[i+1]; frames_left[i] = max_hold_frames; } else { --(frames_left[i]); composite_frame[i] *= damping_factor; } } } unconvert( composite_frame, buffer, N2, c_lastphase_out, c_fundamental, c_factor_out ); rdft( N, -1, buffer, bitshuffle, trigland ); overlapadd( buffer, N, Wsyn, output, Nw, in_count ); for ( j = 0; j < D; j++ ) *out++ = output[j] * mult; for ( j = 0; j < Nw - D; j++ ) output[j] = output[j+D]; for ( j = Nw - D; j < Nw; j++ ) output[j] = 0.; x->in_count = in_count; x->damping_factor = damping_factor; return (w+7); } #if MSP void thresher_float(t_thresher *x, double f) // Look at floats at inlets { int inlet = x->x_obj.z_in; if (inlet == 1) { x->move_threshold = f; } else if (inlet == 2) { x->damping_factor = f; } } #endif void thresher_dsp(t_thresher *x, t_signal **sp, short *count) { #if MSP x->thresh_connected = count[1]; x->damping_connected = count[2]; #endif #if PD x->thresh_connected = 1; x->damping_connected = 1; #endif if(sp[0]->s_n != x->D || x->R != sp[0]->s_sr){ x->D = sp[0]->s_n; x->R = sp[0]->s_sr; thresher_init(x,1); } dsp_add(thresher_perform, 6, x, sp[0]->s_vec, sp[1]->s_vec, sp[2]->s_vec, sp[3]->s_vec, sp[0]->s_n); }