diff options
Diffstat (limited to 'tools/define_louds_routines.c')
-rwxr-xr-x | tools/define_louds_routines.c | 548 |
1 files changed, 548 insertions, 0 deletions
diff --git a/tools/define_louds_routines.c b/tools/define_louds_routines.c new file mode 100755 index 0000000..8a51308 --- /dev/null +++ b/tools/define_louds_routines.c @@ -0,0 +1,548 @@ +/* define_louds_rout.c
+(c) Ville Pulkki 10.11.1998 Helsinki University of Technology
+
+functions for loudspeaker table initialization */
+
+
+#include "define_loudspeakers.h"
+#include <math.h>
+#include <stdio.h>
+#include <stdlib.h>
+
+
+void angle_to_cart(ang_vec *from, cart_vec *to)
+ /* from angular to cartesian coordinates*/
+{
+ float ang2rad = 2 * 3.141592 / 360;
+ to->x= (float) (cos((double)(from->azi * ang2rad))
+ * cos((double) (from->ele * ang2rad)));
+ to->y= (float) (sin((double)(from->azi * ang2rad))
+ * cos((double) (from->ele * ang2rad)));
+ to->z= (float) (sin((double) (from->ele * ang2rad)));
+}
+
+
+void choose_ls_triplets(ls lss[MAX_LS_AMOUNT],
+ struct ls_triplet_chain **ls_triplets, int ls_amount)
+ /* Selects the loudspeaker triplets, and
+ calculates the inversion matrices for each selected triplet.
+ A line (connection) is drawn between each loudspeaker. The lines
+ denote the sides of the triangles. The triangles should not be
+ intersecting. All crossing connections are searched and the
+ longer connection is erased. This yields non-intesecting triangles,
+ which can be used in panning.*/
+{
+ int i,j,k,l,m,li, table_size;
+ int *i_ptr;
+ cart_vec vb1,vb2,tmp_vec;
+ int connections[MAX_LS_AMOUNT][MAX_LS_AMOUNT];
+ float angles[MAX_LS_AMOUNT];
+ int sorted_angles[MAX_LS_AMOUNT];
+ float distance_table[((MAX_LS_AMOUNT * (MAX_LS_AMOUNT - 1)) / 2)];
+ int distance_table_i[((MAX_LS_AMOUNT * (MAX_LS_AMOUNT - 1)) / 2)];
+ int distance_table_j[((MAX_LS_AMOUNT * (MAX_LS_AMOUNT - 1)) / 2)];
+ float distance;
+ struct ls_triplet_chain *trip_ptr, *prev, *tmp_ptr;
+
+ if (ls_amount == 0) {
+ fprintf(stderr,"Number of loudspeakers is zero\nExiting\n");
+ exit(-1);
+ }
+ for(i=0;i<ls_amount;i++)
+ for(j=i+1;j<ls_amount;j++)
+ for(k=j+1;k<ls_amount;k++){
+ if(vol_p_side_lgth(i,j, k, lss) > MIN_VOL_P_SIDE_LGTH){
+ connections[i][j]=1;
+ connections[j][i]=1;
+ connections[i][k]=1;
+ connections[k][i]=1;
+ connections[j][k]=1;
+ connections[k][j]=1;
+ add_ldsp_triplet(i,j,k,ls_triplets, lss);
+ }
+ }
+ /*calculate distancies between all lss and sorting them*/
+ table_size =(((ls_amount - 1) * (ls_amount)) / 2);
+ for(i=0;i<table_size; i++)
+ distance_table[i] = 100000.0;
+ for(i=0;i<ls_amount;i++){
+ for(j=(i+1);j<ls_amount; j++){
+ if(connections[i][j] == 1) {
+ distance = fabs(vec_angle(lss[i].coords,lss[j].coords));
+ k=0;
+ while(distance_table[k] < distance)
+ k++;
+ for(l=(table_size - 1);l > k ;l--){
+ distance_table[l] = distance_table[l-1];
+ distance_table_i[l] = distance_table_i[l-1];
+ distance_table_j[l] = distance_table_j[l-1];
+ }
+ distance_table[k] = distance;
+ distance_table_i[k] = i;
+ distance_table_j[k] = j;
+ } else
+ table_size--;
+ }
+ }
+
+ /* disconnecting connections which are crossing shorter ones,
+ starting from shortest one and removing all that cross it,
+ and proceeding to next shortest */
+ for(i=0; i<(table_size); i++){
+ int fst_ls = distance_table_i[i];
+ int sec_ls = distance_table_j[i];
+ if(connections[fst_ls][sec_ls] == 1)
+ for(j=0; j<ls_amount ; j++)
+ for(k=j+1; k<ls_amount; k++)
+ if( (j!=fst_ls) && (k != sec_ls) && (k!=fst_ls) && (j != sec_ls)){
+ if(lines_intersect(fst_ls, sec_ls, j,k,lss) == 1){
+ connections[j][k] = 0;
+ connections[k][j] = 0;
+ }
+ }
+ }
+
+ /* remove triangles which had crossing sides
+ with smaller triangles or include loudspeakers*/
+ trip_ptr = *ls_triplets;
+ prev = NULL;
+ while (trip_ptr != NULL){
+ i = trip_ptr->ls_nos[0];
+ j = trip_ptr->ls_nos[1];
+ k = trip_ptr->ls_nos[2];
+ if(connections[i][j] == 0 ||
+ connections[i][k] == 0 ||
+ connections[j][k] == 0 ||
+ any_ls_inside_triplet(i,j,k,lss,ls_amount) == 1 ){
+ if(prev != NULL) {
+ prev->next = trip_ptr->next;
+ tmp_ptr = trip_ptr;
+ trip_ptr = trip_ptr->next;
+ free(tmp_ptr);
+ } else {
+ *ls_triplets = trip_ptr->next;
+ tmp_ptr = trip_ptr;
+ trip_ptr = trip_ptr->next;
+ free(tmp_ptr);
+ }
+ } else {
+ prev = trip_ptr;
+ trip_ptr = trip_ptr->next;
+
+ }
+ }
+}
+
+
+int any_ls_inside_triplet(int a, int b, int c,ls lss[MAX_LS_AMOUNT],int ls_amount)
+ /* returns 1 if there is loudspeaker(s) inside given ls triplet */
+{
+ float invdet;
+ cart_vec *lp1, *lp2, *lp3;
+ float invmx[9];
+ int i,j,k;
+ float tmp;
+ int any_ls_inside, this_inside;
+
+ lp1 = &(lss[a].coords);
+ lp2 = &(lss[b].coords);
+ lp3 = &(lss[c].coords);
+
+ /* matrix inversion */
+ invdet = 1.0 / ( lp1->x * ((lp2->y * lp3->z) - (lp2->z * lp3->y))
+ - lp1->y * ((lp2->x * lp3->z) - (lp2->z * lp3->x))
+ + lp1->z * ((lp2->x * lp3->y) - (lp2->y * lp3->x)));
+
+ invmx[0] = ((lp2->y * lp3->z) - (lp2->z * lp3->y)) * invdet;
+ invmx[3] = ((lp1->y * lp3->z) - (lp1->z * lp3->y)) * -invdet;
+ invmx[6] = ((lp1->y * lp2->z) - (lp1->z * lp2->y)) * invdet;
+ invmx[1] = ((lp2->x * lp3->z) - (lp2->z * lp3->x)) * -invdet;
+ invmx[4] = ((lp1->x * lp3->z) - (lp1->z * lp3->x)) * invdet;
+ invmx[7] = ((lp1->x * lp2->z) - (lp1->z * lp2->x)) * -invdet;
+ invmx[2] = ((lp2->x * lp3->y) - (lp2->y * lp3->x)) * invdet;
+ invmx[5] = ((lp1->x * lp3->y) - (lp1->y * lp3->x)) * -invdet;
+ invmx[8] = ((lp1->x * lp2->y) - (lp1->y * lp2->x)) * invdet;
+
+ any_ls_inside = 0;
+ for(i=0; i< ls_amount; i++) {
+ if (i != a && i!=b && i != c){
+ this_inside = 1;
+ for(j=0; j< 3; j++){
+ tmp = lss[i].coords.x * invmx[0 + j*3];
+ tmp += lss[i].coords.y * invmx[1 + j*3];
+ tmp += lss[i].coords.z * invmx[2 + j*3];
+ if(tmp < -0.001)
+ this_inside = 0;
+ }
+ if(this_inside == 1)
+ any_ls_inside=1;
+ }
+ }
+ return any_ls_inside;
+}
+
+
+void add_ldsp_triplet(int i, int j, int k,
+ struct ls_triplet_chain **ls_triplets,
+ ls lss[MAX_LS_AMOUNT])
+ /* adds i,j,k triplet to triplet chain*/
+{
+ struct ls_triplet_chain *trip_ptr, *prev;
+ trip_ptr = *ls_triplets;
+ prev = NULL;
+
+ while (trip_ptr != NULL){
+ prev = trip_ptr;
+ trip_ptr = trip_ptr->next;
+ }
+ trip_ptr = (struct ls_triplet_chain*)
+ malloc (sizeof (struct ls_triplet_chain));
+ if(prev == NULL)
+ *ls_triplets = trip_ptr;
+ else
+ prev->next = trip_ptr;
+ trip_ptr->next = NULL;
+ trip_ptr->ls_nos[0] = i;
+ trip_ptr->ls_nos[1] = j;
+ trip_ptr->ls_nos[2] = k;
+}
+
+
+
+
+float vec_angle(cart_vec v1, cart_vec v2)
+{
+ float inner= ((v1.x*v2.x + v1.y*v2.y + v1.z*v2.z)/
+ (vec_length(v1) * vec_length(v2)));
+ if(inner > 1.0)
+ inner= 1.0;
+ if (inner < -1.0)
+ inner = -1.0;
+ return fabsf((float) acos((double) inner));
+}
+
+float vec_length(cart_vec v1)
+{
+ return (sqrt(v1.x*v1.x + v1.y*v1.y + v1.z*v1.z));
+}
+
+float vec_prod(cart_vec v1, cart_vec v2)
+{
+ return (v1.x*v2.x + v1.y*v2.y + v1.z*v2.z);
+}
+
+
+float vol_p_side_lgth(int i, int j,int k, ls lss[MAX_LS_AMOUNT] ){
+ /* calculate volume of the parallelepiped defined by the loudspeaker
+ direction vectors and divide it with total length of the triangle sides.
+ This is used when removing too narrow triangles. */
+
+ float volper, lgth;
+ cart_vec xprod;
+ cross_prod(lss[i].coords, lss[j].coords, &xprod);
+ volper = fabsf(vec_prod(xprod, lss[k].coords));
+ lgth = (fabsf(vec_angle(lss[i].coords,lss[j].coords))
+ + fabsf(vec_angle(lss[i].coords,lss[k].coords))
+ + fabsf(vec_angle(lss[j].coords,lss[k].coords)));
+ if(lgth>0.00001)
+ return volper / lgth;
+ else
+ return 0.0;
+}
+
+void cross_prod(cart_vec v1,cart_vec v2,
+ cart_vec *res)
+{
+ float length;
+ res->x = (v1.y * v2.z ) - (v1.z * v2.y);
+ res->y = (v1.z * v2.x ) - (v1.x * v2.z);
+ res->z = (v1.x * v2.y ) - (v1.y * v2.x);
+
+ length= vec_length(*res);
+ res->x /= length;
+ res->y /= length;
+ res->z /= length;
+}
+
+
+int lines_intersect(int i,int j,int k,int l,ls lss[MAX_LS_AMOUNT])
+ /* checks if two lines intersect on 3D sphere
+ see theory in paper Pulkki, V. Lokki, T. "Creating Auditory Displays
+ with Multiple Loudspeakers Using VBAP: A Case Study with
+ DIVA Project" in International Conference on
+ Auditory Displays -98. E-mail Ville.Pulkki@hut.fi
+ if you want to have that paper.*/
+{
+ cart_vec v1;
+ cart_vec v2;
+ cart_vec v3, neg_v3;
+ float angle;
+ float dist_ij,dist_kl,dist_iv3,dist_jv3,dist_inv3,dist_jnv3;
+ float dist_kv3,dist_lv3,dist_knv3,dist_lnv3;
+
+ cross_prod(lss[i].coords,lss[j].coords,&v1);
+ cross_prod(lss[k].coords,lss[l].coords,&v2);
+ cross_prod(v1,v2,&v3);
+
+ neg_v3.x= 0.0 - v3.x;
+ neg_v3.y= 0.0 - v3.y;
+ neg_v3.z= 0.0 - v3.z;
+
+ dist_ij = (vec_angle(lss[i].coords,lss[j].coords));
+ dist_kl = (vec_angle(lss[k].coords,lss[l].coords));
+ dist_iv3 = (vec_angle(lss[i].coords,v3));
+ dist_jv3 = (vec_angle(v3,lss[j].coords));
+ dist_inv3 = (vec_angle(lss[i].coords,neg_v3));
+ dist_jnv3 = (vec_angle(neg_v3,lss[j].coords));
+ dist_kv3 = (vec_angle(lss[k].coords,v3));
+ dist_lv3 = (vec_angle(v3,lss[l].coords));
+ dist_knv3 = (vec_angle(lss[k].coords,neg_v3));
+ dist_lnv3 = (vec_angle(neg_v3,lss[l].coords));
+
+ /* if one of loudspeakers is close to crossing point, don't do anything*/
+
+
+ if(fabsf(dist_iv3) <= 0.01 || fabsf(dist_jv3) <= 0.01 ||
+ fabsf(dist_kv3) <= 0.01 || fabsf(dist_lv3) <= 0.01 ||
+ fabsf(dist_inv3) <= 0.01 || fabsf(dist_jnv3) <= 0.01 ||
+ fabsf(dist_knv3) <= 0.01 || fabsf(dist_lnv3) <= 0.01 )
+ return(0);
+
+
+
+ if (((fabsf(dist_ij - (dist_iv3 + dist_jv3)) <= 0.01 ) &&
+ (fabsf(dist_kl - (dist_kv3 + dist_lv3)) <= 0.01)) ||
+ ((fabsf(dist_ij - (dist_inv3 + dist_jnv3)) <= 0.01) &&
+ (fabsf(dist_kl - (dist_knv3 + dist_lnv3)) <= 0.01 ))) {
+ return (1);
+ } else {
+ return (0);
+ }
+}
+
+
+
+void calculate_3x3_matrixes(struct ls_triplet_chain *ls_triplets,
+ ls lss[MAX_LS_AMOUNT], int ls_amount)
+ /* Calculates the inverse matrices for 3D */
+{
+ float invdet;
+ cart_vec *lp1, *lp2, *lp3;
+ float *invmx;
+ float *ptr;
+ struct ls_triplet_chain *tr_ptr = ls_triplets;
+ int triplet_amount = 0, ftable_size,i,j,k;
+ float *ls_table;
+
+ if (tr_ptr == NULL){
+ fprintf(stderr,"Not valid 3-D configuration\n");
+ exit(-1);
+ }
+
+ /* counting triplet amount */
+ while(tr_ptr != NULL){
+ triplet_amount++;
+ tr_ptr = tr_ptr->next;
+ }
+
+ /* calculations and data storage to a global array */
+ ls_table = (float *) malloc( (triplet_amount*12 + 3) * sizeof (float));
+ ls_table[0] = 3.0; /*dimension*/
+ ls_table[1] = (float) ls_amount;
+ ls_table[2] = (float) triplet_amount;
+ tr_ptr = ls_triplets;
+ ptr = (float *) &(ls_table[3]);
+ while(tr_ptr != NULL){
+ lp1 = &(lss[tr_ptr->ls_nos[0]].coords);
+ lp2 = &(lss[tr_ptr->ls_nos[1]].coords);
+ lp3 = &(lss[tr_ptr->ls_nos[2]].coords);
+
+ /* matrix inversion */
+ invmx = tr_ptr->inv_mx;
+ invdet = 1.0 / ( lp1->x * ((lp2->y * lp3->z) - (lp2->z * lp3->y))
+ - lp1->y * ((lp2->x * lp3->z) - (lp2->z * lp3->x))
+ + lp1->z * ((lp2->x * lp3->y) - (lp2->y * lp3->x)));
+
+ invmx[0] = ((lp2->y * lp3->z) - (lp2->z * lp3->y)) * invdet;
+ invmx[3] = ((lp1->y * lp3->z) - (lp1->z * lp3->y)) * -invdet;
+ invmx[6] = ((lp1->y * lp2->z) - (lp1->z * lp2->y)) * invdet;
+ invmx[1] = ((lp2->x * lp3->z) - (lp2->z * lp3->x)) * -invdet;
+ invmx[4] = ((lp1->x * lp3->z) - (lp1->z * lp3->x)) * invdet;
+ invmx[7] = ((lp1->x * lp2->z) - (lp1->z * lp2->x)) * -invdet;
+ invmx[2] = ((lp2->x * lp3->y) - (lp2->y * lp3->x)) * invdet;
+ invmx[5] = ((lp1->x * lp3->y) - (lp1->y * lp3->x)) * -invdet;
+ invmx[8] = ((lp1->x * lp2->y) - (lp1->y * lp2->x)) * invdet;
+ for(i=0;i<3;i++){
+ *(ptr++) = (float) tr_ptr->ls_nos[i]+1;
+ }
+ for(i=0;i<9;i++){
+ *(ptr++) = (float) invmx[i];
+ }
+ tr_ptr = tr_ptr->next;
+ }
+
+ k=3;
+ printf("Configured %d sets in 3 dimensions:\n", triplet_amount);
+ for(i=0 ; i < triplet_amount ; i++) {
+ printf("Triplet %d Loudspeakers: ", i);
+ for (j=0 ; j < 3 ; j++) {
+ printf("%d ", (int) ls_table[k++]);
+ }
+ printf(" Matrix ");
+ for (j=0 ; j < 9; j++) {
+ printf("%f ", ls_table[k]);
+ k++;
+ }
+ printf("\n");
+ }
+}
+
+
+
+void choose_ls_tuplets( ls lss[MAX_LS_AMOUNT],
+ ls_triplet_chain **ls_triplets,
+ int ls_amount)
+ /* selects the loudspeaker pairs, calculates the inversion
+ matrices and stores the data to a global array*/
+{
+ float atorad = (2 * 3.1415927 / 360) ;
+ int i,j,k;
+ float w1,w2;
+ float p1,p2;
+ int sorted_lss[MAX_LS_AMOUNT];
+ int exist[MAX_LS_AMOUNT];
+ int amount=0;
+ float inv_mat[MAX_LS_AMOUNT][4], *ptr;
+ float *ls_table;
+
+ for(i=0;i<MAX_LS_AMOUNT;i++){
+ exist[i]=0;
+ }
+
+ /* sort loudspeakers according their aximuth angle */
+ sort_2D_lss(lss,sorted_lss,ls_amount);
+
+ /* adjacent loudspeakers are the loudspeaker pairs to be used.*/
+ for(i=0;i<(ls_amount-1);i++){
+ if((lss[sorted_lss[i+1]].angles.azi -
+ lss[sorted_lss[i]].angles.azi) <= (3.1415927 - 0.175)){
+ if (calc_2D_inv_tmatrix( lss[sorted_lss[i]].angles.azi,
+ lss[sorted_lss[i+1]].angles.azi,
+ inv_mat[i]) != 0){
+ exist[i]=1;
+ amount++;
+ }
+ }
+ }
+
+ if(((6.283 - lss[sorted_lss[ls_amount-1]].angles.azi)
+ +lss[sorted_lss[0]].angles.azi) <= (3.1415927 - 0.175)) {
+ if(calc_2D_inv_tmatrix(lss[sorted_lss[ls_amount-1]].angles.azi,
+ lss[sorted_lss[0]].angles.azi,
+ inv_mat[ls_amount-1]) != 0) {
+ exist[ls_amount-1]=1;
+ amount++;
+ }
+ }
+ ls_table = (float*) malloc ((amount * 6 + 3 + 100 ) * sizeof (float));
+ ls_table[0] = 2.0; /*dimension*/
+ ls_table[1] = (float) ls_amount;
+ ls_table[2] = (float) amount;
+ ptr = &(ls_table[3]);
+ for (i=0;i<ls_amount - 1;i++){
+ if(exist[i] == 1) {
+ *(ptr++) = sorted_lss[i]+1;
+ *(ptr++) = sorted_lss[i+1]+1;
+ for(j=0;j<4;j++) {
+ *(ptr++) = inv_mat[i][j];
+ }
+ }
+ }
+
+ if(exist[ls_amount-1] == 1) {
+ *(ptr++) = sorted_lss[ls_amount-1]+1;
+ *(ptr++) = sorted_lss[0]+1;
+ for(j=0;j<4;j++) {
+ *(ptr++) = inv_mat[ls_amount-1][j];
+ }
+ }
+ k=3;
+ printf("Configured %d pairs in 2 dimensions:\n",amount);
+ for(i=0 ; i < amount ; i++) {
+ printf("Pair %d Loudspeakers: ", i);
+ for (j=0 ; j < 2 ; j++) {
+ printf("%d ", (int) ls_table[k++]);
+ }
+ printf(" Matrix ");
+ for (j=0 ; j < 4; j++) {
+ printf("%f ", ls_table[k]);
+ k++;
+ }
+ printf("\n");
+ }
+}
+
+void sort_2D_lss(ls lss[MAX_LS_AMOUNT], int sorted_lss[MAX_LS_AMOUNT],
+ int ls_amount)
+{
+ int i,j,index;
+ float tmp, tmp_azi;
+ float rad2ang = 360.0 / ( 2 * 3.141592 );
+
+ float x,y;
+ /* Transforming angles between -180 and 180 */
+ for (i=0;i<ls_amount;i++) {
+ angle_to_cart(&lss[i].angles, &lss[i].coords);
+ lss[i].angles.azi = (float) acos((double) lss[i].coords.x);
+ if (fabsf(lss[i].coords.y) <= 0.001)
+ tmp = 1.0;
+ else
+ tmp = lss[i].coords.y / fabsf(lss[i].coords.y);
+ lss[i].angles.azi *= tmp;
+ }
+ for (i=0;i<ls_amount;i++){
+ tmp = 2000;
+ for (j=0 ; j<ls_amount;j++){
+ if (lss[j].angles.azi <= tmp){
+ tmp=lss[j].angles.azi;
+ index = j ;
+ }
+ }
+ sorted_lss[i]=index;
+ tmp_azi = (lss[index].angles.azi);
+ lss[index].angles.azi = (tmp_azi + (float) 4000.0);
+ }
+ for (i=0;i<ls_amount;i++) {
+ tmp_azi = (lss[i].angles.azi);
+ lss[i].angles.azi = (tmp_azi - (float) 4000.0);
+ }
+}
+
+
+int calc_2D_inv_tmatrix(float azi1,float azi2, float inv_mat[4])
+{
+ float x1,x2,x3,x4; /* x1 x3 */
+ float y1,y2,y3,y4; /* x2 x4 */
+ float det;
+ x1 = (float) cos((double) azi1 );
+ x2 = (float) sin((double) azi1 );
+ x3 = (float) cos((double) azi2 );
+ x4 = (float) sin((double) azi2 );
+ det = (x1 * x4) - ( x3 * x2 );
+ if(fabsf(det) <= 0.001) {
+
+ inv_mat[0] = 0.0;
+ inv_mat[1] = 0.0;
+ inv_mat[2] = 0.0;
+ inv_mat[3] = 0.0;
+ return 0;
+ } else {
+ inv_mat[0] = (float) (x4 / det);
+ inv_mat[1] = (float) (-x3 / det);
+ inv_mat[2] = (float) (-x2 / det);
+ inv_mat[3] = (float) (x1 / det);
+ return 1;
+ }
+}
+
+
|