aboutsummaryrefslogtreecommitdiff
path: root/tools/define_louds_routines.c
blob: 8a5130847709ecd8a7aee46b765e84d136266733 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
/* define_louds_rout.c
(c) Ville Pulkki   10.11.1998 Helsinki University of Technology

functions for loudspeaker table initialization */


#include "define_loudspeakers.h"
#include <math.h>
#include <stdio.h>
#include <stdlib.h>

 
void angle_to_cart(ang_vec *from, cart_vec *to)
     /* from angular to cartesian coordinates*/
{
  float ang2rad = 2 * 3.141592 / 360;
  to->x= (float) (cos((double)(from->azi * ang2rad)) 
		  * cos((double) (from->ele * ang2rad)));
  to->y= (float) (sin((double)(from->azi * ang2rad)) 
		  * cos((double) (from->ele * ang2rad)));
  to->z= (float) (sin((double) (from->ele * ang2rad)));
}  


void choose_ls_triplets(ls lss[MAX_LS_AMOUNT],   
			struct ls_triplet_chain **ls_triplets, int ls_amount) 
     /* Selects the loudspeaker triplets, and
      calculates the inversion matrices for each selected triplet.
     A line (connection) is drawn between each loudspeaker. The lines
     denote the sides of the triangles. The triangles should not be 
     intersecting. All crossing connections are searched and the 
     longer connection is erased. This yields non-intesecting triangles,
     which can be used in panning.*/
{
  int i,j,k,l,m,li, table_size;
  int *i_ptr;
  cart_vec vb1,vb2,tmp_vec;
  int connections[MAX_LS_AMOUNT][MAX_LS_AMOUNT];
  float angles[MAX_LS_AMOUNT];
  int sorted_angles[MAX_LS_AMOUNT];
  float distance_table[((MAX_LS_AMOUNT * (MAX_LS_AMOUNT - 1)) / 2)];
  int distance_table_i[((MAX_LS_AMOUNT * (MAX_LS_AMOUNT - 1)) / 2)];
  int distance_table_j[((MAX_LS_AMOUNT * (MAX_LS_AMOUNT - 1)) / 2)];
  float distance;
  struct ls_triplet_chain *trip_ptr, *prev, *tmp_ptr;

  if (ls_amount == 0) {
    fprintf(stderr,"Number of loudspeakers is zero\nExiting\n");
    exit(-1);
  }
  for(i=0;i<ls_amount;i++)
    for(j=i+1;j<ls_amount;j++)
      for(k=j+1;k<ls_amount;k++){
	if(vol_p_side_lgth(i,j, k, lss) > MIN_VOL_P_SIDE_LGTH){
	  connections[i][j]=1;
	  connections[j][i]=1;
	  connections[i][k]=1;
	  connections[k][i]=1;
	  connections[j][k]=1;
	  connections[k][j]=1;
	  add_ldsp_triplet(i,j,k,ls_triplets, lss);
	}
      }
  /*calculate distancies between all lss and sorting them*/
  table_size =(((ls_amount - 1) * (ls_amount)) / 2); 
  for(i=0;i<table_size; i++)
    distance_table[i] = 100000.0;
  for(i=0;i<ls_amount;i++){ 
    for(j=(i+1);j<ls_amount; j++){ 
      if(connections[i][j] == 1) {
	distance = fabs(vec_angle(lss[i].coords,lss[j].coords));
	k=0;
	while(distance_table[k] < distance)
	  k++;
	for(l=(table_size - 1);l > k ;l--){
	  distance_table[l] = distance_table[l-1];
	  distance_table_i[l] = distance_table_i[l-1];
	  distance_table_j[l] = distance_table_j[l-1];
	}
	distance_table[k] = distance;
	distance_table_i[k] = i;
	distance_table_j[k] = j;
      } else
	table_size--;
    }
  }

  /* disconnecting connections which are crossing shorter ones,
     starting from shortest one and removing all that cross it,
     and proceeding to next shortest */
  for(i=0; i<(table_size); i++){
    int fst_ls = distance_table_i[i];
    int sec_ls = distance_table_j[i];
    if(connections[fst_ls][sec_ls] == 1)
      for(j=0; j<ls_amount ; j++)
	for(k=j+1; k<ls_amount; k++)
	  if( (j!=fst_ls) && (k != sec_ls) && (k!=fst_ls) && (j != sec_ls)){
	    if(lines_intersect(fst_ls, sec_ls, j,k,lss) == 1){
	      connections[j][k] = 0;
	      connections[k][j] = 0;
	    }
	  }
  }

  /* remove triangles which had crossing sides
     with smaller triangles or include loudspeakers*/
  trip_ptr = *ls_triplets;
  prev = NULL;
  while (trip_ptr != NULL){
    i = trip_ptr->ls_nos[0];
    j = trip_ptr->ls_nos[1];
    k = trip_ptr->ls_nos[2];
    if(connections[i][j] == 0 || 
       connections[i][k] == 0 || 
       connections[j][k] == 0 ||
       any_ls_inside_triplet(i,j,k,lss,ls_amount) == 1 ){
      if(prev != NULL) {
	prev->next = trip_ptr->next;
	tmp_ptr = trip_ptr;
	trip_ptr = trip_ptr->next;
	free(tmp_ptr);
      } else {
	*ls_triplets = trip_ptr->next;
	tmp_ptr = trip_ptr;
	trip_ptr = trip_ptr->next;
	free(tmp_ptr);
      }
    } else {
      prev = trip_ptr;
      trip_ptr = trip_ptr->next;

    }
  }
}


int any_ls_inside_triplet(int a, int b, int c,ls lss[MAX_LS_AMOUNT],int ls_amount)
     /* returns 1 if there is loudspeaker(s) inside given ls triplet */
{
  float invdet;
  cart_vec *lp1, *lp2, *lp3;
  float invmx[9];
  int i,j,k;
  float tmp;
  int any_ls_inside, this_inside;

  lp1 =  &(lss[a].coords);
  lp2 =  &(lss[b].coords);
  lp3 =  &(lss[c].coords);

  /* matrix inversion */
  invdet = 1.0 / (  lp1->x * ((lp2->y * lp3->z) - (lp2->z * lp3->y))
		    - lp1->y * ((lp2->x * lp3->z) - (lp2->z * lp3->x))
		    + lp1->z * ((lp2->x * lp3->y) - (lp2->y * lp3->x)));
  
  invmx[0] = ((lp2->y * lp3->z) - (lp2->z * lp3->y)) * invdet;
  invmx[3] = ((lp1->y * lp3->z) - (lp1->z * lp3->y)) * -invdet;
  invmx[6] = ((lp1->y * lp2->z) - (lp1->z * lp2->y)) * invdet;
  invmx[1] = ((lp2->x * lp3->z) - (lp2->z * lp3->x)) * -invdet;
  invmx[4] = ((lp1->x * lp3->z) - (lp1->z * lp3->x)) * invdet;
  invmx[7] = ((lp1->x * lp2->z) - (lp1->z * lp2->x)) * -invdet;
  invmx[2] = ((lp2->x * lp3->y) - (lp2->y * lp3->x)) * invdet;
  invmx[5] = ((lp1->x * lp3->y) - (lp1->y * lp3->x)) * -invdet;
  invmx[8] = ((lp1->x * lp2->y) - (lp1->y * lp2->x)) * invdet;

  any_ls_inside = 0;
  for(i=0; i< ls_amount; i++) {
    if (i != a && i!=b && i != c){
      this_inside = 1;
      for(j=0; j< 3; j++){
	tmp = lss[i].coords.x * invmx[0 + j*3];
	tmp += lss[i].coords.y * invmx[1 + j*3];
	tmp += lss[i].coords.z * invmx[2 + j*3];
	if(tmp < -0.001)
	  this_inside = 0;
      }
      if(this_inside == 1)
	any_ls_inside=1;
    }
  }
  return any_ls_inside;
}


void add_ldsp_triplet(int i, int j, int k, 
		       struct ls_triplet_chain **ls_triplets,
		       ls lss[MAX_LS_AMOUNT])
     /* adds i,j,k triplet to triplet chain*/
{
  struct ls_triplet_chain *trip_ptr, *prev;
  trip_ptr = *ls_triplets;
  prev = NULL;

  while (trip_ptr != NULL){
    prev = trip_ptr;
    trip_ptr = trip_ptr->next;
  }
  trip_ptr = (struct ls_triplet_chain*) 
    malloc (sizeof (struct ls_triplet_chain));
  if(prev == NULL)
    *ls_triplets = trip_ptr;
  else 
    prev->next = trip_ptr;
  trip_ptr->next = NULL;
  trip_ptr->ls_nos[0] = i;
  trip_ptr->ls_nos[1] = j;
  trip_ptr->ls_nos[2] = k;
}




float vec_angle(cart_vec v1, cart_vec v2)
{
  float inner= ((v1.x*v2.x + v1.y*v2.y + v1.z*v2.z)/
	      (vec_length(v1) * vec_length(v2)));
  if(inner > 1.0)
    inner= 1.0;
  if (inner < -1.0)
    inner = -1.0;
  return fabsf((float) acos((double) inner));
}

float vec_length(cart_vec v1)
{
  return (sqrt(v1.x*v1.x + v1.y*v1.y + v1.z*v1.z));
}

float vec_prod(cart_vec v1, cart_vec v2)
{
  return (v1.x*v2.x + v1.y*v2.y + v1.z*v2.z);
}


float vol_p_side_lgth(int i, int j,int k, ls  lss[MAX_LS_AMOUNT] ){
  /* calculate volume of the parallelepiped defined by the loudspeaker
     direction vectors and divide it with total length of the triangle sides. 
     This is used when removing too narrow triangles. */

  float volper, lgth;
  cart_vec xprod;
  cross_prod(lss[i].coords, lss[j].coords, &xprod);
  volper = fabsf(vec_prod(xprod, lss[k].coords));
  lgth = (fabsf(vec_angle(lss[i].coords,lss[j].coords)) 
	  + fabsf(vec_angle(lss[i].coords,lss[k].coords)) 
	  + fabsf(vec_angle(lss[j].coords,lss[k].coords)));
  if(lgth>0.00001)
    return volper / lgth;
  else
    return 0.0;
}

void cross_prod(cart_vec v1,cart_vec v2, 
		cart_vec *res) 
{
  float length;
  res->x = (v1.y * v2.z ) - (v1.z * v2.y);
  res->y = (v1.z * v2.x ) - (v1.x * v2.z);
  res->z = (v1.x * v2.y ) - (v1.y * v2.x);

  length= vec_length(*res);
  res->x /= length;
  res->y /= length;
  res->z /= length;
}


int lines_intersect(int i,int j,int k,int l,ls  lss[MAX_LS_AMOUNT])
     /* checks if two lines intersect on 3D sphere 
      see theory in paper Pulkki, V. Lokki, T. "Creating Auditory Displays
      with Multiple Loudspeakers Using VBAP: A Case Study with
      DIVA Project" in International Conference on 
      Auditory Displays -98. E-mail Ville.Pulkki@hut.fi
     if you want to have that paper.*/
{
  cart_vec v1;
  cart_vec v2;
  cart_vec v3, neg_v3;
  float angle;
  float dist_ij,dist_kl,dist_iv3,dist_jv3,dist_inv3,dist_jnv3;
  float dist_kv3,dist_lv3,dist_knv3,dist_lnv3;

  cross_prod(lss[i].coords,lss[j].coords,&v1);
  cross_prod(lss[k].coords,lss[l].coords,&v2);
  cross_prod(v1,v2,&v3);

  neg_v3.x= 0.0 - v3.x;
  neg_v3.y= 0.0 - v3.y;
  neg_v3.z= 0.0 - v3.z;

  dist_ij = (vec_angle(lss[i].coords,lss[j].coords));
  dist_kl = (vec_angle(lss[k].coords,lss[l].coords));
  dist_iv3 = (vec_angle(lss[i].coords,v3));
  dist_jv3 = (vec_angle(v3,lss[j].coords));
  dist_inv3 = (vec_angle(lss[i].coords,neg_v3));
  dist_jnv3 = (vec_angle(neg_v3,lss[j].coords));
  dist_kv3 = (vec_angle(lss[k].coords,v3));
  dist_lv3 = (vec_angle(v3,lss[l].coords));
  dist_knv3 = (vec_angle(lss[k].coords,neg_v3));
  dist_lnv3 = (vec_angle(neg_v3,lss[l].coords));

  /* if one of loudspeakers is close to crossing point, don't do anything*/


  if(fabsf(dist_iv3) <= 0.01 || fabsf(dist_jv3) <= 0.01 || 
  fabsf(dist_kv3) <= 0.01 || fabsf(dist_lv3) <= 0.01 ||
     fabsf(dist_inv3) <= 0.01 || fabsf(dist_jnv3) <= 0.01 || 
     fabsf(dist_knv3) <= 0.01 || fabsf(dist_lnv3) <= 0.01 )
    return(0);


 
  if (((fabsf(dist_ij - (dist_iv3 + dist_jv3)) <= 0.01 ) &&
       (fabsf(dist_kl - (dist_kv3 + dist_lv3))  <= 0.01)) ||
      ((fabsf(dist_ij - (dist_inv3 + dist_jnv3)) <= 0.01)  &&
       (fabsf(dist_kl - (dist_knv3 + dist_lnv3)) <= 0.01 ))) {
    return (1);
  } else {
    return (0);
  }
}



void  calculate_3x3_matrixes(struct ls_triplet_chain *ls_triplets, 
			 ls lss[MAX_LS_AMOUNT], int ls_amount)
     /* Calculates the inverse matrices for 3D */
{  
  float invdet;
  cart_vec *lp1, *lp2, *lp3;
  float *invmx;
  float *ptr;
  struct ls_triplet_chain *tr_ptr = ls_triplets;
  int triplet_amount = 0, ftable_size,i,j,k;
  float *ls_table;

  if (tr_ptr == NULL){
    fprintf(stderr,"Not valid 3-D configuration\n");
    exit(-1);
  }

  /* counting triplet amount */
  while(tr_ptr != NULL){
    triplet_amount++;
    tr_ptr = tr_ptr->next;
  }

  /* calculations and data storage to a global array */
  ls_table = (float *) malloc( (triplet_amount*12 + 3) * sizeof (float));
  ls_table[0] = 3.0; /*dimension*/
  ls_table[1] = (float) ls_amount;
  ls_table[2] = (float) triplet_amount;
  tr_ptr = ls_triplets;
  ptr = (float *) &(ls_table[3]);
  while(tr_ptr != NULL){
    lp1 =  &(lss[tr_ptr->ls_nos[0]].coords);
    lp2 =  &(lss[tr_ptr->ls_nos[1]].coords);
    lp3 =  &(lss[tr_ptr->ls_nos[2]].coords);

    /* matrix inversion */
    invmx = tr_ptr->inv_mx;
    invdet = 1.0 / (  lp1->x * ((lp2->y * lp3->z) - (lp2->z * lp3->y))
		    - lp1->y * ((lp2->x * lp3->z) - (lp2->z * lp3->x))
		    + lp1->z * ((lp2->x * lp3->y) - (lp2->y * lp3->x)));

    invmx[0] = ((lp2->y * lp3->z) - (lp2->z * lp3->y)) * invdet;
    invmx[3] = ((lp1->y * lp3->z) - (lp1->z * lp3->y)) * -invdet;
    invmx[6] = ((lp1->y * lp2->z) - (lp1->z * lp2->y)) * invdet;
    invmx[1] = ((lp2->x * lp3->z) - (lp2->z * lp3->x)) * -invdet;
    invmx[4] = ((lp1->x * lp3->z) - (lp1->z * lp3->x)) * invdet;
    invmx[7] = ((lp1->x * lp2->z) - (lp1->z * lp2->x)) * -invdet;
    invmx[2] = ((lp2->x * lp3->y) - (lp2->y * lp3->x)) * invdet;
    invmx[5] = ((lp1->x * lp3->y) - (lp1->y * lp3->x)) * -invdet;
    invmx[8] = ((lp1->x * lp2->y) - (lp1->y * lp2->x)) * invdet;
    for(i=0;i<3;i++){
      *(ptr++) = (float) tr_ptr->ls_nos[i]+1;
    }
    for(i=0;i<9;i++){
      *(ptr++) = (float) invmx[i];
    }
    tr_ptr = tr_ptr->next;
  }

  k=3;
  printf("Configured %d sets in 3 dimensions:\n", triplet_amount);
  for(i=0 ; i < triplet_amount ; i++) {
    printf("Triplet %d Loudspeakers: ", i);
    for (j=0 ; j < 3 ; j++) {
      printf("%d ", (int) ls_table[k++]);
    }
    printf(" Matrix ");
    for (j=0 ; j < 9; j++) {
      printf("%f ", ls_table[k]);
      k++;
    }
    printf("\n");
  }
}



void choose_ls_tuplets( ls lss[MAX_LS_AMOUNT],
			ls_triplet_chain **ls_triplets,
			int ls_amount)
     /* selects the loudspeaker pairs, calculates the inversion
	matrices and stores the data to a global array*/
{
  float atorad = (2 * 3.1415927 / 360) ;
  int i,j,k;
  float w1,w2;
  float p1,p2;
  int sorted_lss[MAX_LS_AMOUNT];
  int exist[MAX_LS_AMOUNT];
  int amount=0;
  float inv_mat[MAX_LS_AMOUNT][4], *ptr;
  float *ls_table;
  
  for(i=0;i<MAX_LS_AMOUNT;i++){
    exist[i]=0;
  }

  /* sort loudspeakers according their aximuth angle */
  sort_2D_lss(lss,sorted_lss,ls_amount);

  /* adjacent loudspeakers are the loudspeaker pairs to be used.*/
  for(i=0;i<(ls_amount-1);i++){
    if((lss[sorted_lss[i+1]].angles.azi - 
	lss[sorted_lss[i]].angles.azi) <= (3.1415927 - 0.175)){
      if (calc_2D_inv_tmatrix( lss[sorted_lss[i]].angles.azi, 
			       lss[sorted_lss[i+1]].angles.azi, 
			       inv_mat[i]) != 0){
	exist[i]=1;
	amount++;
      }
    }
  }

  if(((6.283 - lss[sorted_lss[ls_amount-1]].angles.azi) 
      +lss[sorted_lss[0]].angles.azi) <= (3.1415927 - 0.175)) {
    if(calc_2D_inv_tmatrix(lss[sorted_lss[ls_amount-1]].angles.azi, 
			   lss[sorted_lss[0]].angles.azi, 
			   inv_mat[ls_amount-1]) != 0) { 
      	exist[ls_amount-1]=1;
	amount++;
    } 
  }
  ls_table = (float*) malloc ((amount * 6 + 3 + 100 ) * sizeof (float));
  ls_table[0] = 2.0; /*dimension*/
  ls_table[1] = (float) ls_amount;
  ls_table[2] = (float) amount;
  ptr = &(ls_table[3]);
  for (i=0;i<ls_amount - 1;i++){
    if(exist[i] == 1) {
      *(ptr++) = sorted_lss[i]+1;
      *(ptr++) = sorted_lss[i+1]+1;
      for(j=0;j<4;j++) {
        *(ptr++) = inv_mat[i][j];
      }
    }
  }

  if(exist[ls_amount-1] == 1) {
    *(ptr++) = sorted_lss[ls_amount-1]+1;
    *(ptr++) = sorted_lss[0]+1;
    for(j=0;j<4;j++) {
      *(ptr++) = inv_mat[ls_amount-1][j];
    }
  }
  k=3;
  printf("Configured %d pairs in 2 dimensions:\n",amount);
  for(i=0 ; i < amount ; i++) {
    printf("Pair %d Loudspeakers: ", i);
    for (j=0 ; j < 2 ; j++) {
      printf("%d ", (int) ls_table[k++]);
    }
    printf(" Matrix ");
    for (j=0 ; j < 4; j++) {
      printf("%f ", ls_table[k]);
      k++;
    }
    printf("\n");
  }
}

void sort_2D_lss(ls lss[MAX_LS_AMOUNT], int sorted_lss[MAX_LS_AMOUNT], 
		 int ls_amount)
{
  int i,j,index;
  float tmp, tmp_azi;
  float rad2ang = 360.0 / ( 2 * 3.141592 );

  float x,y;
  /* Transforming angles between -180 and 180 */
  for (i=0;i<ls_amount;i++) {
    angle_to_cart(&lss[i].angles, &lss[i].coords);
    lss[i].angles.azi = (float) acos((double) lss[i].coords.x);
    if (fabsf(lss[i].coords.y) <= 0.001)
    	tmp = 1.0;
    else
    	tmp = lss[i].coords.y / fabsf(lss[i].coords.y);
    lss[i].angles.azi *= tmp;
  }
  for (i=0;i<ls_amount;i++){
    tmp = 2000;
    for (j=0 ; j<ls_amount;j++){
      if (lss[j].angles.azi <= tmp){
	tmp=lss[j].angles.azi;
	index = j ;
      }
    }
    sorted_lss[i]=index;
    tmp_azi = (lss[index].angles.azi);
    lss[index].angles.azi = (tmp_azi + (float) 4000.0);
  }
  for (i=0;i<ls_amount;i++) {
    tmp_azi = (lss[i].angles.azi);
    lss[i].angles.azi = (tmp_azi - (float) 4000.0);
  }
}
  

int calc_2D_inv_tmatrix(float azi1,float azi2, float inv_mat[4])
{
  float x1,x2,x3,x4; /* x1 x3 */
  float y1,y2,y3,y4; /* x2 x4 */
  float det;
  x1 = (float) cos((double) azi1 );
  x2 = (float) sin((double) azi1 );
  x3 = (float) cos((double) azi2 );
  x4 = (float) sin((double) azi2 );
  det = (x1 * x4) - ( x3 * x2 );
   if(fabsf(det) <= 0.001) {

    inv_mat[0] = 0.0;
    inv_mat[1] = 0.0;
    inv_mat[2] = 0.0;
    inv_mat[3] = 0.0;
    return 0;
  } else {
    inv_mat[0] =  (float) (x4 / det);
    inv_mat[1] =  (float) (-x3 / det);
    inv_mat[2] =  (float) (-x2 / det);
    inv_mat[3] =  (float)  (x1 / det);
    return 1;
  }
}