diff options
author | Georg Holzmann <grholzi@users.sourceforge.net> | 2005-07-12 14:40:21 +0000 |
---|---|---|
committer | Georg Holzmann <grholzi@users.sourceforge.net> | 2005-07-12 14:40:21 +0000 |
commit | 7c3c5dd0f8d7089bd50282e9dcd56e36798e18cf (patch) | |
tree | 156c00e6213b8c48e520d9eeee499ddce4c649be | |
parent | 94d966b50ab1a09d8650b7c693e9223273a44acf (diff) |
initial commit of pix_recNN
svn path=/trunk/externals/grh/; revision=3320
-rwxr-xr-x | pix_recNN/Makefile | 46 | ||||
-rwxr-xr-x | pix_recNN/NNActivation.h | 78 | ||||
-rwxr-xr-x | pix_recNN/NNException.h | 49 | ||||
-rwxr-xr-x | pix_recNN/NNet.h | 636 | ||||
-rwxr-xr-x | pix_recNN/Neuron.cpp | 169 | ||||
-rwxr-xr-x | pix_recNN/Neuron.h | 191 | ||||
-rwxr-xr-x | pix_recNN/RecurrentNeuron.cpp | 226 | ||||
-rwxr-xr-x | pix_recNN/RecurrentNeuron.h | 149 | ||||
-rwxr-xr-x | pix_recNN/gpl.txt | 346 | ||||
-rwxr-xr-x | pix_recNN/help-pix_recNN.pd | 146 | ||||
-rwxr-xr-x | pix_recNN/pix_recNN.cpp | 423 | ||||
-rwxr-xr-x | pix_recNN/pix_recNN.h | 204 | ||||
-rwxr-xr-x | pix_recNN/readme.txt | 27 |
13 files changed, 2690 insertions, 0 deletions
diff --git a/pix_recNN/Makefile b/pix_recNN/Makefile new file mode 100755 index 0000000..ab880e8 --- /dev/null +++ b/pix_recNN/Makefile @@ -0,0 +1,46 @@ +PD-PATH=/usr/lib/pd +PD-SCR=/usr/include + +# location of the GEM sources and Gem.pd_linux: +GEM-SCR=/home/Georg/pd-cvs/gem/Gem/src +GEM-LIB=$(PD-PATH)/extra/Gem.pd_linux + + +CC = g++ +LD = g++ +INCLUDE=-I$(PD-SCR) -I$(GEM-SCR) -I./src +LIB=-lc -lm -L$(GEM-LIB) +CC_FLAGS = -c -Wall -g -g -O2 -mmmx -fno-builtin -O3 -funroll-loops -ffast-math +LD_FLAGS = --export-dynamic -shared -o + + +TARGET=pix_recNN.pd_linux +OBJ=RecurrentNeuron.o Neuron.o pix_recNN.o +#-------------------------------------------------------- + +all: pd_linux + +pd_linux: $(TARGET) + +$(TARGET): $(OBJ) + $(LD) $(LD_FLAGS) $(TARGET) $(OBJ) $(LIB) + strip --strip-unneeded $(TARGET) + chmod 755 $(TARGET) + +pix_recNN.o: RecurrentNeuron.o pix_recNN.h pix_recNN.cpp NNet.h NNException.h + $(CC) $(CC_FLAGS) $(INCLUDE) pix_recNN.cpp + + +RecurrentNeuron.o: RecurrentNeuron.cpp RecurrentNeuron.h Neuron.o NNActivation.h + +Neuron.o: Neuron.cpp Neuron.h NNActivation.h + +#-------------------------------------------------------- + +clean: + rm -f $(OBJ) $(TARGET) + + +install: + cp -f $(TARGET) $(PD-PATH)/externs + cp -f *.pd $(PD-PATH)/doc/5.reference diff --git a/pix_recNN/NNActivation.h b/pix_recNN/NNActivation.h new file mode 100755 index 0000000..e91c046 --- /dev/null +++ b/pix_recNN/NNActivation.h @@ -0,0 +1,78 @@ +///////////////////////////////////////////////////////////////////////////// +// +// NNActivation.h +// +// all the activation functions of the neurons +// +// header file +// +// Copyright (c) 2005 Georg Holzmann <grh@gmx.at> +// +// This program is free software; you can redistribute it and/or +// modify it under the terms of the GNU General Public License +// as published by the Free Software Foundation; either version 2 +// of the License, or (at your option) any later version. +// +///////////////////////////////////////////////////////////////////////////// + + +#ifndef _INCLUDE_ACTIVATION_NET__ +#define _INCLUDE_ACTIVATION_NET__ + + +#include <math.h> + +namespace TheBrain +{ + +//------------------------------------------------------ +/* implementation of the different activation functions + * and it's derivations + */ + +/* Linear activation function. + * span: -inf < y < inf + * y = x +*/ +#define LINEAR 0 + +/* Sigmoid activation function. + * span: 0 < y < 1 + * y = 1/(1 + exp(-x)), y' = y*(1 - y) + */ +#define SIGMOID 1 + +/* Symmetric sigmoid activation function, aka. tanh. + * span: -1 < y < 1 + * y = tanh(x) = 2/(1 + exp(-2*x)) - 1, d = 1-(y*y) +*/ +#define TANH 2 + +// linear function +float act_linear(float value) +{ return value; } + +// derivation of the linear function +float act_linear_derive(float value) +{ return 1; } + +// sigmoid function +float act_sigmoid(float value) +{ return (1.0f/(1.0f + exp(-value))); } + +// derivation of the sigmoid function +float act_sigmoid_derive(float value) +{ return (value * (1.0f - value)); } + +// tanh function +float act_tanh(float value) +{ return (2.0f/(1.0f + exp(-2.0f * value)) - 1.0f); } + +// derivation of the tanh function +float act_tanh_derive(float value) +{ return (1.0f - (value*value)); } + + +} // end of namespace + +#endif // _INCLUDE_ACTIVATION_NET__ diff --git a/pix_recNN/NNException.h b/pix_recNN/NNException.h new file mode 100755 index 0000000..bcb7be5 --- /dev/null +++ b/pix_recNN/NNException.h @@ -0,0 +1,49 @@ +///////////////////////////////////////////////////////////////////////////// +// +// NNDefines.h +// +// global stuff for all the nets +// +// header file +// +// Copyright (c) 2005 Georg Holzmann <grh@gmx.at> +// +// This program is free software; you can redistribute it and/or +// modify it under the terms of the GNU General Public License +// as published by the Free Software Foundation; either version 2 +// of the License, or (at your option) any later version. +// +///////////////////////////////////////////////////////////////////////////// + + +#ifndef _INCLUDE_NNDEFINES_NET__ +#define _INCLUDE_NNDEFINES_NET__ + +#include <string> + +using std::string; + +namespace TheBrain +{ + +//------------------------------------------------------ +/* the exception class for all the neural network stuff + */ +class NNExcept +{ + protected: + string message_; + + public: + NNExcept(string message="") + { message_ = message; } + virtual ~NNExcept() { } + + virtual string what() + { return message_; } +}; + +} // end of namespace NNet + +#endif //_INCLUDE_NNDEFINES_NET__ + diff --git a/pix_recNN/NNet.h b/pix_recNN/NNet.h new file mode 100755 index 0000000..349688f --- /dev/null +++ b/pix_recNN/NNet.h @@ -0,0 +1,636 @@ +///////////////////////////////////////////////////////////////////////////// +// +// class NNet +// +// this is a template for all the nets +// (see NeuralNet documentations for more information) +// +// header file +// +// Copyright (c) 2005 Georg Holzmann <grh@gmx.at> +// +// +// This program is free software; you can redistribute it and/or +// modify it under the terms of the GNU General Public License +// as published by the Free Software Foundation; either version 2 +// of the License, or (at your option) any later version. +// +///////////////////////////////////////////////////////////////////////////// + + +#ifndef _INCLUDE_NEURAL_TEMPLATE_NET__ +#define _INCLUDE_NEURAL_TEMPLATE_NET__ + +#include "NNActivation.h" +#include "NNException.h" + +namespace TheBrain +{ + +template <class HiddNeuronType,class OutNeuronType> +class NNet +{ + protected: + + /* the number of output values + * this is automatically also the + * number of output neurons ! + */ + int output_val_; + + /* the number of hidden neurons + * per one output neuron + * (this net has one hidden layer, + * so this is the number of hidden + * neurons is hidden_val_*output_val_) + */ + int hidden_val_; + + /* nr of input values per one output neuron + * (so the number of input values are + * input_val_*output_val_) + */ + int input_val_; + + /* the memory of the output layer + * if you use a recurrent neuron, this + * determines how much output values the + * recurrent neurons can remeber + * these values are fed back as new input + */ + int memory_out_; + + /* the memory of the hidden layer + * if you use a recurrent neuron, this + * determines how much output values the + * recurrent neurons can remeber + * these values are fed back as new input + */ + int memory_hidden_; + + /* these are the output neurons + */ + OutNeuronType *out_neurons_; + + /* these are the hidden neurons + */ + HiddNeuronType *hidden_neurons_; + + /* function pointer to the activation + * function of the output neurons + */ + float (*output_act_f)(float value); + + /* function pointer to the activation + * function of the hidden neurons + */ + float (*hidden_act_f)(float value); + + /* function pointer to the derivation of the + * activation function of the hidden neurons + */ + float (*hidden_act_f_d)(float value); + + + public: + + /* Constructor + */ + NNet(int input_val=1, int hidden_val=1, int output_val=1, int memory_out=0, + int memory_hidden=1, int HIDDEN_ACT_FUNC=0, int OUT_ACT_FUNC=0); + + /* Destructor + */ + virtual ~NNet(); + + + //----------------------------------------------------- + + /* Set/Get learning rate + */ + virtual void setLearningRate(float learn_rate); + virtual float getLearningRate() const; + + /* Set/Get range + * (see Neuron.h) + */ + virtual void setRange(float range); + virtual float getRange() const; + + /* some more get/set methods + */ + virtual void setOutputVal(int output_val) + throw(); + virtual int getOutputVal() const; + + virtual void setHiddenVal(int hidden_val) + throw(); + virtual int getHiddenVal() const; + + virtual void setInputVal(int input_val) + throw(); + virtual int getInputVal() const; + + virtual void setMemoryOut(int memory) + throw(); + virtual int getMemoryOut() const; + + virtual void setMemoryHidden(int memory) + throw(); + virtual int getMemoryHidden() const; + + + //----------------------------------------------------- + + /* creates the network + */ + virtual void create() + throw(NNExcept); + + /* inits the weight matrix and the bias vector of + * the network with random values between [min|max] + */ + virtual void initRand(const int &min, const int &max) + throw(NNExcept); + + /* calculates the output with the current Net and writes + * it in the array output_data + * ATTENTION: array input_data must be a matrix in the form: + * float[output_val_][input_val_] + * array output_data must be in size output_val_ + * (there is no checking !!!) + */ + virtual void calculate(float **input_data, float *output_data); + + /* this method trains the network: + * input_data is, as above, the input data, output_data is the + * output of the current net with input_data, target_output is + * the desired output data + * (this is the a truncated backpropagation through time + * algorithm to train the network) + * ATTENTION: array input_data must be a matrix in the form: + * float[output_val_][input_val_] + * array output_data must be in size output_val_ + * array target_output must be in size output_val_ + * (there is no checking !!!) + */ + virtual void trainBTT(float **input_data, float *output_data, + float *target_output); + + + //----------------------------------------------------- + + /* saves the contents of the current net to file + */ + virtual void save(string filename) + throw(NNExcept); + + /* loads the parameters of the net from file + */ + virtual void load(string filename) + throw(NNExcept); + + + //----------------------------------------------------- + private: + + /* output of the hidden layer with activation function + */ + float *hidden_a_; + + /* output of the hidden layer without activation function + */ + float *hidden_s_; + + /* error signal of the neurons in the hidden layer + */ + float *hidden_error_; + + /* out signal without activation function + */ + float out_s_; + + /* error signal of the output layer + */ + float out_error_; + + /* Copy Construction is not allowed + */ + NNet(const NNet<HiddNeuronType,OutNeuronType> &src) + { } + + /* assignement operator is not allowed + */ + const NNet<HiddNeuronType,OutNeuronType>& operator= + (const NNet<HiddNeuronType,OutNeuronType>& src) + { return *this; } +}; + + +//-------------------------------------------------- +/* Constructor + */ +template <class HiddNeuronType, class OutNeuronType> +NNet<HiddNeuronType,OutNeuronType> + ::NNet(int input_val, int hidden_val, int output_val, int memory_out, + int memory_hidden, int HIDDEN_ACT_FUNC, int OUT_ACT_FUNC) + : out_neurons_(NULL), hidden_neurons_(NULL), hidden_a_(NULL), + hidden_s_(NULL), hidden_error_(NULL) +{ + output_val_ = (output_val<1) ? 1 : output_val; + hidden_val_ = (hidden_val<0) ? 0 : hidden_val; + input_val_ = (input_val<1) ? 1 : input_val; + memory_out_ = (memory_out<0) ? 0 : memory_out; + memory_hidden_ = (memory_hidden<0) ? 0 : memory_hidden; + + // choose hidden activation function: + switch(HIDDEN_ACT_FUNC) + { + case SIGMOID: + hidden_act_f = act_sigmoid; + hidden_act_f_d = act_sigmoid_derive; + break; + case TANH: + hidden_act_f = act_tanh; + hidden_act_f_d = act_tanh_derive; + break; + default: + case LINEAR: + hidden_act_f = act_linear; + hidden_act_f_d = act_linear_derive; + break; + } + + // choose out function: + switch(OUT_ACT_FUNC) + { + case SIGMOID: + output_act_f = act_sigmoid; + break; + case TANH: + output_act_f = act_tanh; + break; + default: + case LINEAR: + output_act_f = act_linear; + break; + } +} + +//-------------------------------------------------- +/* Destructor + */ +template <class HiddNeuronType, class OutNeuronType> +NNet<HiddNeuronType, OutNeuronType>::~NNet() +{ + if(hidden_neurons_) + delete[] hidden_neurons_; + + if(out_neurons_) + delete[] out_neurons_; + + if(hidden_a_) + delete[] hidden_a_; + + if(hidden_s_) + delete[] hidden_s_; + + if(hidden_error_) + delete[] hidden_error_; +} + +//-------------------------------------------------- +/* creates the network + */ +template <class HiddNeuronType, class OutNeuronType> +void NNet<HiddNeuronType,OutNeuronType>::create() + throw(NNExcept) +{ + // delete if they exist + if(out_neurons_) + delete[] out_neurons_; + if(hidden_neurons_) + delete[] hidden_neurons_; + if(hidden_a_) + delete[] hidden_a_; + if(hidden_s_) + delete[] hidden_s_; + if(hidden_error_) + delete[] hidden_error_; + + + out_neurons_ = new OutNeuronType[output_val_](input_val_,memory_out_); + hidden_neurons_ = new HiddNeuronType[hidden_val_*output_val_](input_val_,memory_hidden_); + + if(!out_neurons_ || !hidden_neurons_) + throw NNExcept("No memory for Neurons!"); + + // create the temporary storage + hidden_a_ = new float[hidden_val_]; + hidden_s_ = new float[hidden_val_]; + hidden_error_ = new float[hidden_val_]; + + if(!hidden_a_ || !hidden_s_ || !hidden_error_) + throw NNExcept("No memory for Neurons!"); + + + // create all the neurons + for(int i=0; i<output_val_; i++) + out_neurons_[i].create(); + for(int i=0; i<hidden_val_*output_val_; i++) + hidden_neurons_[i].create(); +} + +//-------------------------------------------------- +/* inits the weight matrix and the bias vector of + * the network with random values between [min|max] + */ +template <class HiddNeuronType, class OutNeuronType> +void NNet<HiddNeuronType,OutNeuronType>::initRand(const int &min, const int &max) + throw(NNExcept) +{ + if(!out_neurons_) + throw NNExcept("You must first create the Net!"); + + // init all the neurons + for(int i=0; i<output_val_; i++) + out_neurons_[i].initRand(min,max); + for(int i=0; i<hidden_val_*output_val_; i++) + hidden_neurons_[i].initRand(min,max); +} + +//-------------------------------------------------- +/* calculates the output with the current Net and writes + * it in the array output_data + * ATTENTION: array input_data must be a matrix in the form: + * float[output_val_][input_val_] + * array output_data must be in size output_val_ + * (there is no checking !!!) + */ +template <class HiddNeuronType, class OutNeuronType> +void NNet<HiddNeuronType,OutNeuronType>::calculate(float **input_data, float *output_data) +{ + for(int i=0; i<output_val_; i++) + { + + // 1.: calculation of the hidden layer + for(int j=0; j<hidden_val_; j++) + { + hidden_a_[j] = hidden_act_f( + hidden_neurons_[i*hidden_val_+j].calculate(input_data[i]) ); + } + + // 2.: calculation of the output layer + *output_data++ = output_act_f( out_neurons_[i].calculate(hidden_a_) ); + } +} + +//-------------------------------------------------- +/* this method trains the network: + * input_data is, as above, the input data, output_data is the + * output of the current net with input_data, target_output is + * the desired output data + * (this is the a truncated backpropagation through time + * algorithm to train the network) + * ATTENTION: array input_data must be a matrix in the form: + * float[output_val_][input_val_] + * array output_data must be in size output_val_ + * array target_output must be in size output_val_ + * (there is no checking !!!) + */ +template <class HiddNeuronType, class OutNeuronType> +void NNet<HiddNeuronType,OutNeuronType>::trainBTT(float **input_data, float *output_data, + float *target_output) +{ + post("train"); + + for(int i=0; i<output_val_; i++) + { + + + //--------------------------------------------------------- + // 1. Forward - Pass: + // + // the output of the hidden and the output-layer + // are calculated and saved (before and after + // the activation function) + + // calculation of the hidden layer + for(int j=0; j<hidden_val_; j++) + { + hidden_s_[j] = hidden_neurons_[i*hidden_val_+j].calculate(input_data[i]); + hidden_a_[j] = hidden_act_f(hidden_s_[j]); + } + + // calculation of the output layer + out_s_ = out_neurons_[i].calculate(hidden_a_); + output_data[i] = output_act_f(out_s_); + + + //--------------------------------------------------------- + // 2. Backward - Pass: + // + // calculation of the error signals + // (they are also stored) + + // output layer + out_error_ = output_data[i] - target_output[i]; + + // hidden layer: + for(int j=0; j<hidden_val_; j++) + { + hidden_error_[j] = hidden_act_f_d( hidden_s_[j]+0.1 ) * + ( out_error_ * out_neurons_[i].getIW(j) ); + } + + + //--------------------------------------------------------- + // 3. Modification of the weights: + + for(int j=0; j<hidden_val_; j++) + { + // output layer: + out_neurons_[i].setIW(j, + out_neurons_[i].getIW(j) - + getLearningRate() * out_error_ + * hidden_a_[j] ); + + // hidden layer: + for(int k=0; k<input_val_; k++) + { + hidden_neurons_[i*hidden_val_+j].setIW(k, + hidden_neurons_[i*hidden_val_+j].getIW(k) - + getLearningRate() * hidden_error_[j] + * input_data[i][k]/hidden_neurons_[0].getRange() ); + } + + + // recurrent part of the hidden layer: + float delta = getLearningRate() * hidden_error_[j] * hidden_a_[j]; + for(int k=0; k<memory_hidden_; k++) + { + hidden_neurons_[i*hidden_val_+j].setLW(k, + hidden_neurons_[i*hidden_val_+j].getLW(k) - delta); + } + } + + // recurrent part of the output layer: + float delta = getLearningRate() * out_error_ * output_data[i]; + for(int j=0; j<memory_out_; j++) + { + out_neurons_[i].setLW(j, + out_neurons_[i].getLW(j) - delta); + } + + + } +} + +//-------------------------------------------------- +/* saves the contents of the current net to file + */ +template <class HiddNeuronType, class OutNeuronType> +void NNet<HiddNeuronType,OutNeuronType>::save(string filename) + throw(NNExcept) +{ + +} + +//-------------------------------------------------- + /* loads the parameters of the net from file + */ +template <class HiddNeuronType, class OutNeuronType> +void NNet<HiddNeuronType,OutNeuronType>::load(string filename) + throw(NNExcept) +{ + +} + +//----------------------------------------------------- +/* Set/Get learning rate + * (see Neuron.h) + */ +template <class HiddNeuronType, class OutNeuronType> +void NNet<HiddNeuronType,OutNeuronType>::setLearningRate(float learn_rate) +{ + learn_rate = (learn_rate<0) ? 0 : learn_rate; + + for(int i=0; i<output_val_; i++) + out_neurons_[i].setLearningRate(learn_rate); + for(int i=0; i<hidden_val_*output_val_; i++) + hidden_neurons_[i].setLearningRate(learn_rate); +} +template <class HiddNeuronType, class OutNeuronType> +float NNet<HiddNeuronType, OutNeuronType>::getLearningRate() const +{ + return out_neurons_[0].getLearningRate(); +} + +//----------------------------------------------------- +/* Set/Get range + * (see Neuron.h) + */ +template <class HiddNeuronType, class OutNeuronType> +void NNet<HiddNeuronType,OutNeuronType>::setRange(float range) +{ + for(int i=0; i<output_val_; i++) + out_neurons_[i].setRange(1); + + for(int i=0; i<hidden_val_*output_val_; i++) + hidden_neurons_[i].setRange(range); +} +template <class HiddNeuronType, class OutNeuronType> +float NNet<HiddNeuronType, OutNeuronType>::getRange() const +{ + return hidden_neurons_[0].getRange(); +} + +//----------------------------------------------------- +/* get/set output_val_ + */ +template <class HiddNeuronType, class OutNeuronType> +void NNet<HiddNeuronType,OutNeuronType>::setOutputVal(int output_val) + throw() +{ + output_val_ = (output_val<1) ? 1 : output_val; + + create(); +} +template <class HiddNeuronType, class OutNeuronType> +int NNet<HiddNeuronType,OutNeuronType>::getOutputVal() const +{ + return output_val_; +} + +//----------------------------------------------------- +/* get/set hidden_val_ + */ +template <class HiddNeuronType, class OutNeuronType> +void NNet<HiddNeuronType,OutNeuronType>::setHiddenVal(int hidden_val) + throw() +{ + hidden_val_ = (hidden_val<1) ? 1 : hidden_val; + + create(); +} +template <class HiddNeuronType, class OutNeuronType> +int NNet<HiddNeuronType,OutNeuronType>::getHiddenVal() const +{ + return hidden_val_; +} + +//----------------------------------------------------- +/* get/set input_val_ + */ +template <class HiddNeuronType, class OutNeuronType> +void NNet<HiddNeuronType,OutNeuronType>::setInputVal(int input_val) + throw() +{ + input_val_ = (input_val<1) ? 1 : input_val; + + create(); +} +template <class HiddNeuronType, class OutNeuronType> +int NNet<HiddNeuronType,OutNeuronType>::getInputVal() const +{ + return input_val_; +} + +//----------------------------------------------------- +/* get/set memory of the output layer + */ +template <class HiddNeuronType, class OutNeuronType> +void NNet<HiddNeuronType,OutNeuronType>::setMemoryOut(int memory) + throw() +{ + memory_out_ = (memory<0) ? 0 : memory; + + create(); +} +template <class HiddNeuronType, class OutNeuronType> +int NNet<HiddNeuronType,OutNeuronType>::getMemoryOut() const +{ + return memory_out_; +} + +//----------------------------------------------------- +/* get/set memory of the hidden layer + */ +template <class HiddNeuronType, class OutNeuronType> +void NNet<HiddNeuronType,OutNeuronType>::setMemoryHidden(int memory) + throw() +{ + memory_hidden_ = (memory<0) ? 0 : memory; + + create(); +} +template <class HiddNeuronType, class OutNeuronType> +int NNet<HiddNeuronType,OutNeuronType>::getMemoryHidden() const +{ + return memory_hidden_; +} + + +} // end of namespace + +#endif //_INCLUDE_LIN_NEURAL_NET__ diff --git a/pix_recNN/Neuron.cpp b/pix_recNN/Neuron.cpp new file mode 100755 index 0000000..c020c1c --- /dev/null +++ b/pix_recNN/Neuron.cpp @@ -0,0 +1,169 @@ +///////////////////////////////////////////////////////////////////////////// +// +// class Neuron +// +// source file +// +// Copyright (c) 2005 Georg Holzmann <grh@gmx.at> +// +// This program is free software; you can redistribute it and/or +// modify it under the terms of the GNU General Public License +// as published by the Free Software Foundation; either version 2 +// of the License, or (at your option) any later version. +// +///////////////////////////////////////////////////////////////////////////// + +#include "Neuron.h" + +namespace TheBrain +{ + +//-------------------------------------------------- +/* Constructor + */ +Neuron::Neuron(int inputs, int dummy) + : learn_rate_(0), range_(1), IW_(NULL), b1_(0) +{ + inputs_ = (inputs<1) ? 1 : inputs; +} + +//-------------------------------------------------- +/* Destructor + */ +Neuron::~Neuron() +{ + if(IW_) + delete[] IW_; +} + +//-------------------------------------------------- +/* creates a new IW-matrix (size: inputs_) and + * b1-vector + * ATTENTION: if they exist they'll be deleted + */ +void Neuron::create() + throw(NNExcept) +{ + // delete if they exist + if(IW_) + delete[] IW_; + + IW_ = new float[inputs_]; + if(!IW_) + throw NNExcept("No memory for Neurons!"); +} + +//-------------------------------------------------- +/* inits the weight matrix and the bias vector of + * the network with random values between [min|max] + */ +void Neuron::initRand(const int &min, const int &max) + throw(NNExcept) +{ + if(!IW_) + throw NNExcept("You must first create the Net!"); + + // make randomvalue between 0 and 1 + // then map it to the bounds + b1_ = ((float)rand()/(float)RAND_MAX)*(max-min) + min; + + for(int i=0; i<inputs_; i++) + { + IW_[i] = ((float)rand()/(float)RAND_MAX)*(max-min) + min; + } + + //post("b1: %f, IW: %f %f %f", b1_, IW_[0], IW_[1], IW_[2]); +} + +//-------------------------------------------------- +/* inits the net with a given weight matrix and bias + * (makes a deep copy) + * ATTENTION: the dimension of IW-pointer must be the same + * as the inputs !!! + */ +void Neuron::init(const float *IW, float b1) + throw(NNExcept) +{ + if(!IW_) + throw NNExcept("You must first create the Net!"); + + b1_ = b1; + + for(int i=0; i<inputs_; i++) + IW_[i] = IW[i]; +} + +//-------------------------------------------------- +/* calculates the output with the current IW, b1 values + * ATTENTION: the array input_data must be in the same + * size as inputs_ + */ +float Neuron::calculate(float *input_data) +{ + float output = 0; + + // multiply the inputs with the weight matrix IW + // and add the bias vector b1 + for(int i=0; i<inputs_; i++) + { + output += input_data[i] * IW_[i]; + } + + // map input values to the range + output /= range_; + + //post("b1: %f, IW: %f %f %f", b1_, IW_[0], IW_[1], IW_[2]); + //post("range: %f, in: %f %f %f, out: %f",range_,input_data[0], + // input_data[1], input_data[2], output+b1_); + + return (output+b1_); +} + +//-------------------------------------------------- +/* this method trains the network: + * input_data is, as above, the input data, output_data is the + * output of the current net with input_data (output_data is not + * calculated in that method !), target_output is the desired + * output data + * (this is the LMS-algorithm to train linear neural networks) + * ATTENTION: the array input_data must be in the same + * size as inputs_ + * returns the calculated value + */ +// float Neuron::trainLMS(const float *input_data, +// const float &target_output) +// { +// float output = 0; + +// // multiply the inputs with the weight matrix IW +// // and add the bias vector b1 +// for(int i=0; i<inputs_; i++) +// { +// output += input_data[i] * IW_[i]; +// } + +// // map input values to the range +// output /= range_; + +// output += b1_; + +// //------------ + +// // this is the LMS-algorithm to train linear +// // neural networks + +// // calculate the error signal: +// float error = (target_output - output); + +// // now change the weights the bias +// for(int i=0; i<inputs_; i++) +// IW_[i] += 2 * learn_rate_ * error * (input_data[i]/range_); + +// b1_ += 2 * learn_rate_ * error; + +// //------------ + +// return (output); +// } + +} // end of namespace diff --git a/pix_recNN/Neuron.h b/pix_recNN/Neuron.h new file mode 100755 index 0000000..f10d993 --- /dev/null +++ b/pix_recNN/Neuron.h @@ -0,0 +1,191 @@ +///////////////////////////////////////////////////////////////////////////// +// +// class Neuron +// +// this is an implementation of one neuron of a Neural Network +// so this neuron has a Weight-Matrix IW and a bias vector b1 +// this neuron can have n input values, but only one output value +// (see NeuralNet documentations for more information) +// +// header file +// +// Copyright (c) 2005 Georg Holzmann <grh@gmx.at> +// +// This program is free software; you can redistribute it and/or +// modify it under the terms of the GNU General Public License +// as published by the Free Software Foundation; either version 2 +// of the License, or (at your option) any later version. +// +///////////////////////////////////////////////////////////////////////////// + + +#ifndef _INCLUDE_NEURON_NET__ +#define _INCLUDE_NEURON_NET__ + +#include <stdlib.h> +#include <stdexcept> +#include "NNException.h" +#include "m_pd.h" //debug + +namespace TheBrain +{ + +//------------------------------------------------------ +/* class of one neuron + */ +class Neuron +{ + protected: + + /* this is the number of input values, which is + * automatically the input and the size of IW + */ + int inputs_; + + /* the input weight matrix IW + * (size: inputs ) + */ + float *IW_; + + /* the bias vector b1 + */ + float b1_; + + /* the learning rate of the net + */ + float learn_rate_; + + /* the range of the input values should be from 0 + * to range_ + * outputvalues are from -1 to 1 + */ + float range_; + + + public: + + /* Constructor + */ + Neuron(int inputs, int dummy=0); + + /* Destructor + */ + virtual ~Neuron(); + + + //----------------------------------------------------- + + /* Set/Get learning rate + */ + virtual void setLearningRate(float learn_rate) + { learn_rate_=learn_rate; } + virtual float getLearningRate() const + { return learn_rate_; } + + /* Set/Get range + */ + virtual void setRange(float range) + { range_=range; } + virtual float getRange() const + { return range_; } + + /* some more get/set methods + */ + + virtual int getInputs() const + { return inputs_; } + + virtual float *getIW() const + { return IW_; } + virtual float getIW(int index) const + { return IW_[index]; } + + virtual void setIW(const float *IW) + { for(int i=0; i<inputs_; i++) IW_[i] = IW[i]; } + virtual void setIW(int index, float value) + { IW_[index] = value; } + + virtual float getb1() const + { return b1_; } + virtual void setb1(float b1) + { b1_ = b1; } + + + /* dummies + */ + + virtual int getMemory() const + { return 0; } + + virtual float *getLW() const + { return NULL; } + virtual float getLW(int index) const + { return 0; } + + virtual void setLW(const float *LW) + { } + virtual void setLW(int index, float value) + { } + + + //----------------------------------------------------- + + /* creates a new IW-matrix (size: inputs_) and + * b1-vector + * ATTENTION: if they exist they'll be deleted + */ + virtual void create() + throw(NNExcept); + + /* inits the weight matrix and the bias vector of + * the network with random values between [min|max] + */ + virtual void initRand(const int &min, const int &max) + throw(NNExcept); + + /* inits the net with a given weight matrix and bias + * (makes a deep copy) + * ATTENTION: the dimension of IW-pointer must be the same + * as the inputs !!! + */ + virtual void init(const float *IW, float b1) + throw(NNExcept); + + /* calculates the output with the current IW, b1 values + * ATTENTION: the array input_data must be in the same + * size as inputs_ + */ + virtual float calculate(float *input_data); + + /* this method trains the network: + * input_data is, as above, the input data, output_data is the + * output of the current net with input_data (output_data is not + * calculated in that method !), target_output is the desired + * output data + * (this is the LMS-algorithm to train linear neural networks) + * ATTENTION: the array input_data must be in the same + * size as inputs_ + * returns the calculated value + */ +/* virtual float trainLMS(const float *input_data, */ +/* const float &target_output); */ + + + //----------------------------------------------------- + private: + + /* Copy Construction is not allowed + */ + Neuron(const Neuron &src) + { } + + /* assignement operator is not allowed + */ + const Neuron& operator= (const Neuron& src) + { return *this; } +}; + + +} // end of namespace + +#endif //_INCLUDE_NEURON_NET__ diff --git a/pix_recNN/RecurrentNeuron.cpp b/pix_recNN/RecurrentNeuron.cpp new file mode 100755 index 0000000..1b322c1 --- /dev/null +++ b/pix_recNN/RecurrentNeuron.cpp @@ -0,0 +1,226 @@ +///////////////////////////////////////////////////////////////////////////// +// +// class RecurrentNeuron +// +// source file +// +// Copyright (c) 2005 Georg Holzmann <grh@gmx.at> +// +// This program is free software; you can redistribute it and/or +// modify it under the terms of the GNU General Public License +// as published by the Free Software Foundation; either version 2 +// of the License, or (at your option) any later version. +// +///////////////////////////////////////////////////////////////////////////// + +#include "RecurrentNeuron.h" + +namespace TheBrain +{ + +//-------------------------------------------------- +/* Constructor + */ +RecurrentNeuron::RecurrentNeuron(int inputs, int memory) + : Neuron(inputs), LW_(NULL), mem_data_(NULL) +{ + memory_ = (memory<0) ? 1 : memory+1; +} + +//-------------------------------------------------- +/* Destructor + */ +RecurrentNeuron::~RecurrentNeuron() +{ + if(LW_) + delete[] LW_; + + if(mem_data_) + delete[] mem_data_; +} + +//-------------------------------------------------- +/* creates a new IW-matrix (size: inputs_) and + * b1-vector + * ATTENTION: if they exist they'll be deleted + */ +void RecurrentNeuron::create() + throw(NNExcept) +{ + // delete if they exist + if(IW_) + delete[] IW_; + if(LW_) + delete[] LW_; + if(mem_data_) + delete[] mem_data_; + + IW_ = new float[inputs_]; + LW_ = new float[memory_]; + mem_data_ = new float[memory_]; + + if(!IW_ || !LW_ || !mem_data_) + throw NNExcept("No memory for Neurons!"); + + index_=0; +} + +//-------------------------------------------------- +/* inits the weight matrix and the bias vector of + * the network with random values between [min|max] + */ +void RecurrentNeuron::initRand(const int &min, const int &max) + throw(NNExcept) +{ + if(!IW_ || !LW_) + throw NNExcept("You must first create the Net!"); + + // make randomvalue between 0 and 1 + // then map it to the bounds + b1_ = ((float)rand()/(float)RAND_MAX)*(max-min) + min; + + for(int i=0; i<inputs_; i++) + { + IW_[i] = ((float)rand()/(float)RAND_MAX)*(max-min) + min; + } + for(int i=0; i<memory_; i++) + { + //LW_[i] = ((float)rand()/(float)RAND_MAX)*(max-min) + min; + LW_[i] = ((float)rand()/(float)RAND_MAX)*(min); + } +} + +//-------------------------------------------------- +/* inits the net with given weight matrix and bias + * (makes a deep copy) + * ATTENTION: the dimension of IW-pointer must be the same + * as the inputs (also for LW) !!! + */ +void RecurrentNeuron::init(const float *IW, const float *LW, float b1) + throw(NNExcept) +{ + if(!IW_ || !LW_) + throw NNExcept("You must first create the Net!"); + + b1_ = b1; + + for(int i=0; i<inputs_; i++) + IW_[i] = IW[i]; + for(int i=0; i<memory_; i++) + LW_[i] = LW[i]; +} + +//-------------------------------------------------- +/* calculates the output with the current IW, b1 values + * ATTENTION: the array input_data must be in the same + * size as inputs_ + */ +float RecurrentNeuron::calculate(float *input_data) +{ + float output = 0; + + // multiply the inputs with the weight matrix IW + for(int i=0; i<inputs_; i++) + { + output += input_data[i] * IW_[i]; + } + + // map input values to the range + output /= range_; + + // multiply memory with weight matrix LW + // the index is used to make something + // like a simple list or ringbuffer + for(int i=0; i<memory_; i++) + { + output += mem_data_[index_] * LW_[i]; + index_ = (index_+1) % memory_; + } + + // now add bias + output += b1_; + + // finally save the new output in memory + mem_data_[index_] = output; + index_ = (index_+1) % memory_; + + //post("input: %f %f %f, IW: %f %f %f, b: %f", + // input_data[0], input_data[1], input_data[2], + // IW_[0], IW_[1], IW_[2], b1_); + //post("output: %f",output); + + return (output); +} + +//-------------------------------------------------- +/* this method trains the network: + * input_data is, as above, the input data, output_data is the + * output of the current net with input_data (output_data is not + * calculated in that method !), target_output is the desired + * output data + * (this is the LMS-algorithm to train linear neural networks) + * ATTENTION: the array input_data must be in the same + * size as inputs_ + * returns the calculated output + */ +// float RecurrentNeuron::trainLMS(const float *input_data, +// const float &target_output) +// { +// // calculate output value: + +// float output = 0; + +// // multiply the inputs with the weight matrix IW +// for(int i=0; i<inputs_; i++) +// { +// output += input_data[i] * IW_[i]; +// } + +// // map input values to the range +// output /= range_; + +// // multiply memory with weight matrix LW +// // the index is used to make something +// // like a simple list or ringbuffer +// for(int i=0; i<memory_; i++) +// { +// output += mem_data_[index_] * LW_[i]; +// index_ = (index_+1) % memory_; +// } + +// // now add bias +// output += b1_; + +// //---------------- + +// // this is the LMS-algorithm to train linear +// // neural networks + +// // calculate the error signal: +// float error = (target_output - output); + +// // now change IW +// for(int i=0; i<inputs_; i++) +// IW_[i] += 2 * learn_rate_ * error * (input_data[i]/range_); + +// // change LW +// for(int i=0; i<memory_; i++) +// { +// LW_[i] += 2 * learn_rate_ * error * mem_data_[index_]; +// index_ = (index_+1) % memory_; +// } + +// // and the bias +// b1_ += 2 * learn_rate_ * error; + +// //----------------- + +// // finally save the new output in memory +// mem_data_[index_] = output; +// index_ = (index_+1) % memory_; + +// return (output); +// } + + +} // end of namespace diff --git a/pix_recNN/RecurrentNeuron.h b/pix_recNN/RecurrentNeuron.h new file mode 100755 index 0000000..ee87068 --- /dev/null +++ b/pix_recNN/RecurrentNeuron.h @@ -0,0 +1,149 @@ +///////////////////////////////////////////////////////////////////////////// +// +// class RecurrentNeuron +// +// this is an implementation of one neuron of a Recurrent Neural Network +// this neuron can have n input values, m values in it's memory and +// one output value +// (see NeuralNet documentations for more information) +// +// header file +// +// Copyright (c) 2005 Georg Holzmann <grh@gmx.at> +// +// This program is free software; you can redistribute it and/or +// modify it under the terms of the GNU General Public License +// as published by the Free Software Foundation; either version 2 +// of the License, or (at your option) any later version. +// +///////////////////////////////////////////////////////////////////////////// + + +#ifndef _INCLUDE_RECURRENT_NEURON_NET__ +#define _INCLUDE_RECURRENT_NEURON_NET__ + +#include <stdlib.h> +#include <stdexcept> +#include "Neuron.h" + +namespace TheBrain +{ + +//------------------------------------------------------ +/* class of one neuron + */ +class RecurrentNeuron : public Neuron +{ + protected: + + /* this determines how much output values the net + * can remeber + * these values are fed back as new input + */ + int memory_; + + /* the weight matrix for the recurrent + * values (size: memory_) + */ + float *LW_; + + + public: + + /* Constructor + */ + RecurrentNeuron(int inputs, int memory); + + /* Destructor + */ + virtual ~RecurrentNeuron(); + + + //----------------------------------------------------- + /* some more get/set methods + */ + + virtual int getMemory() const + { return memory_; } + + virtual float *getLW() const + { return LW_; } + virtual float getLW(int index) const + { return LW_[index]; } + + virtual void setLW(const float *LW) + { for(int i=0; i<inputs_; i++) LW_[i] = LW[i]; } + virtual void setLW(int index, float value) + { LW_[index] = value; } + + + //----------------------------------------------------- + + /* creates a new IW-matrix (size: inputs_) and + * b1-vector + * ATTENTION: if they exist they'll be deleted + */ + virtual void create() + throw(NNExcept); + + /* inits the weight matrix and the bias vector of + * the network with random values between [min|max] + */ + virtual void initRand(const int &min, const int &max) + throw(NNExcept); + + /* inits the net with given weight matrix and bias + * (makes a deep copy) + * ATTENTION: the dimension of IW-pointer must be the same + * as the inputs (also for LW) !!! + */ + virtual void init(const float *IW, const float *LW, float b1) + throw(NNExcept); + + /* calculates the output with the current IW, b1 values + * ATTENTION: the array input_data must be in the same + * size as inputs_ + */ + virtual float calculate(float *input_data); + + /* this method trains the network: + * input_data is, as above, the input data, output_data is the + * output of the current net with input_data (output_data is not + * calculated in that method !), target_output is the desired + * output data + * (this is the LMS-algorithm to train linear neural networks) + * ATTENTION: the array input_data must be in the same + * size as inputs_ + * returns the calculated output + */ +/* virtual float trainLMS(const float *input_data, */ +/* const float &target_output); */ + + + //----------------------------------------------------- + private: + + /* the storage for the memory data + */ + float *mem_data_; + + /* this index is used to make something + * like a simple list or ringbuffer + */ + int index_; + + /* Copy Construction is not allowed + */ + RecurrentNeuron(const RecurrentNeuron &src) : Neuron(1) + { } + + /* assignement operator is not allowed + */ + const RecurrentNeuron& operator= (const RecurrentNeuron& src) + { return *this; } +}; + + +} // end of namespace + +#endif //_INCLUDE_RECURRENT_NEURON_NET__ diff --git a/pix_recNN/gpl.txt b/pix_recNN/gpl.txt new file mode 100755 index 0000000..5ea29a7 --- /dev/null +++ b/pix_recNN/gpl.txt @@ -0,0 +1,346 @@ + GNU GENERAL PUBLIC LICENSE + Version 2, June 1991 + + Copyright (C) 1989, 1991 Free Software Foundation, Inc. + 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA + Everyone is permitted to copy and distribute verbatim copies + of this license document, but changing it is not allowed. + + Preamble + + The licenses for most software are designed to take away your +freedom to share and change it. By contrast, the GNU General Public +License is intended to guarantee your freedom to share and change free +software--to make sure the software is free for all its users. This +General Public License applies to most of the Free Software +Foundation's software and to any other program whose authors commit to +using it. (Some other Free Software Foundation software is covered by +the GNU Library General Public License instead.) You can apply it to +your programs, too. + + When we speak of free software, we are referring to freedom, not +price. Our General Public Licenses are designed to make sure that you +have the freedom to distribute copies of free software (and charge for +this service if you wish), that you receive source code or can get it +if you want it, that you can change the software or use pieces of it +in new free programs; and that you know you can do these things. + + To protect your rights, we need to make restrictions that forbid +anyone to deny you these rights or to ask you to surrender the rights. +These restrictions translate to certain responsibilities for you if you +distribute copies of the software, or if you modify it. + + For example, if you distribute copies of such a program, whether +gratis or for a fee, you must give the recipients all the rights that +you have. You must make sure that they, too, receive or can get the +source code. And you must show them these terms so they know their +rights. + + We protect your rights with two steps: (1) copyright the software, and +(2) offer you this license which gives you legal permission to copy, +distribute and/or modify the software. + + Also, for each author's protection and ours, we want to make certain +that everyone understands that there is no warranty for this free +software. If the software is modified by someone else and passed on, we +want its recipients to know that what they have is not the original, so +that any problems introduced by others will not reflect on the original +authors' reputations. + + Finally, any free program is threatened constantly by software +patents. We wish to avoid the danger that redistributors of a free +program will individually obtain patent licenses, in effect making the +program proprietary. To prevent this, we have made it clear that any +patent must be licensed for everyone's free use or not licensed at all. + + The precise terms and conditions for copying, distribution and +modification follow. + + + GNU GENERAL PUBLIC LICENSE + TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION + + 0. This License applies to any program or other work which contains +a notice placed by the copyright holder saying it may be distributed +under the terms of this General Public License. The "Program", below, +refers to any such program or work, and a "work based on the Program" +means either the Program or any derivative work under copyright law: +that is to say, a work containing the Program or a portion of it, +either verbatim or with modifications and/or translated into another +language. (Hereinafter, translation is included without limitation in +the term "modification".) Each licensee is addressed as "you". + +Activities other than copying, distribution and modification are not +covered by this License; they are outside its scope. The act of +running the Program is not restricted, and the output from the Program +is covered only if its contents constitute a work based on the +Program (independent of having been made by running the Program). +Whether that is true depends on what the Program does. + + 1. You may copy and distribute verbatim copies of the Program's +source code as you receive it, in any medium, provided that you +conspicuously and appropriately publish on each copy an appropriate +copyright notice and disclaimer of warranty; keep intact all the +notices that refer to this License and to the absence of any warranty; +and give any other recipients of the Program a copy of this License +along with the Program. + +You may charge a fee for the physical act of transferring a copy, and +you may at your option offer warranty protection in exchange for a fee. + + 2. You may modify your copy or copies of the Program or any portion +of it, thus forming a work based on the Program, and copy and +distribute such modifications or work under the terms of Section 1 +above, provided that you also meet all of these conditions: + + a) You must cause the modified files to carry prominent notices + stating that you changed the files and the date of any change. + + b) You must cause any work that you distribute or publish, that in + whole or in part contains or is derived from the Program or any + part thereof, to be licensed as a whole at no charge to all third + parties under the terms of this License. + + c) If the modified program normally reads commands interactively + when run, you must cause it, when started running for such + interactive use in the most ordinary way, to print or display an + announcement including an appropriate copyright notice and a + notice that there is no warranty (or else, saying that you provide + a warranty) and that users may redistribute the program under + these conditions, and telling the user how to view a copy of this + License. (Exception: if the Program itself is interactive but + does not normally print such an announcement, your work based on + the Program is not required to print an announcement.) + + +These requirements apply to the modified work as a whole. If +identifiable sections of that work are not derived from the Program, +and can be reasonably considered independent and separate works in +themselves, then this License, and its terms, do not apply to those +sections when you distribute them as separate works. But when you +distribute the same sections as part of a whole which is a work based +on the Program, the distribution of the whole must be on the terms of +this License, whose permissions for other licensees extend to the +entire whole, and thus to each and every part regardless of who wrote it. + +Thus, it is not the intent of this section to claim rights or contest +your rights to work written entirely by you; rather, the intent is to +exercise the right to control the distribution of derivative or +collective works based on the Program. + +In addition, mere aggregation of another work not based on the Program +with the Program (or with a work based on the Program) on a volume of +a storage or distribution medium does not bring the other work under +the scope of this License. + + 3. You may copy and distribute the Program (or a work based on it, +under Section 2) in object code or executable form under the terms of +Sections 1 and 2 above provided that you also do one of the following: + + a) Accompany it with the complete corresponding machine-readable + source code, which must be distributed under the terms of Sections + 1 and 2 above on a medium customarily used for software interchange; or, + + b) Accompany it with a written offer, valid for at least three + years, to give any third party, for a charge no more than your + cost of physically performing source distribution, a complete + machine-readable copy of the corresponding source code, to be + distributed under the terms of Sections 1 and 2 above on a medium + customarily used for software interchange; or, + + c) Accompany it with the information you received as to the offer + to distribute corresponding source code. (This alternative is + allowed only for noncommercial distribution and only if you + received the program in object code or executable form with such + an offer, in accord with Subsection b above.) + +The source code for a work means the preferred form of the work for +making modifications to it. For an executable work, complete source +code means all the source code for all modules it contains, plus any +associated interface definition files, plus the scripts used to +control compilation and installation of the executable. However, as a +special exception, the source code distributed need not include +anything that is normally distributed (in either source or binary +form) with the major components (compiler, kernel, and so on) of the +operating system on which the executable runs, unless that component +itself accompanies the executable. + +If distribution of executable or object code is made by offering +access to copy from a designated place, then offering equivalent +access to copy the source code from the same place counts as +distribution of the source code, even though third parties are not +compelled to copy the source along with the object code. + + + 4. You may not copy, modify, sublicense, or distribute the Program +except as expressly provided under this License. Any attempt +otherwise to copy, modify, sublicense or distribute the Program is +void, and will automatically terminate your rights under this License. +However, parties who have received copies, or rights, from you under +this License will not have their licenses terminated so long as such +parties remain in full compliance. + + 5. You are not required to accept this License, since you have not +signed it. However, nothing else grants you permission to modify or +distribute the Program or its derivative works. These actions are +prohibited by law if you do not accept this License. Therefore, by +modifying or distributing the Program (or any work based on the +Program), you indicate your acceptance of this License to do so, and +all its terms and conditions for copying, distributing or modifying +the Program or works based on it. + + 6. Each time you redistribute the Program (or any work based on the +Program), the recipient automatically receives a license from the +original licensor to copy, distribute or modify the Program subject to +these terms and conditions. You may not impose any further +restrictions on the recipients' exercise of the rights granted herein. +You are not responsible for enforcing compliance by third parties to +this License. + + 7. If, as a consequence of a court judgment or allegation of patent +infringement or for any other reason (not limited to patent issues), +conditions are imposed on you (whether by court order, agreement or +otherwise) that contradict the conditions of this License, they do not +excuse you from the conditions of this License. If you cannot +distribute so as to satisfy simultaneously your obligations under this +License and any other pertinent obligations, then as a consequence you +may not distribute the Program at all. For example, if a patent +license would not permit royalty-free redistribution of the Program by +all those who receive copies directly or indirectly through you, then +the only way you could satisfy both it and this License would be to +refrain entirely from distribution of the Program. + +If any portion of this section is held invalid or unenforceable under +any particular circumstance, the balance of the section is intended to +apply and the section as a whole is intended to apply in other +circumstances. + +It is not the purpose of this section to induce you to infringe any +patents or other property right claims or to contest validity of any +such claims; this section has the sole purpose of protecting the +integrity of the free software distribution system, which is +implemented by public license practices. Many people have made +generous contributions to the wide range of software distributed +through that system in reliance on consistent application of that +system; it is up to the author/donor to decide if he or she is willing +to distribute software through any other system and a licensee cannot +impose that choice. + +This section is intended to make thoroughly clear what is believed to +be a consequence of the rest of this License. + + + 8. If the distribution and/or use of the Program is restricted in +certain countries either by patents or by copyrighted interfaces, the +original copyright holder who places the Program under this License +may add an explicit geographical distribution limitation excluding +those countries, so that distribution is permitted only in or among +countries not thus excluded. In such case, this License incorporates +the limitation as if written in the body of this License. + + 9. The Free Software Foundation may publish revised and/or new versions +of the General Public License from time to time. Such new versions will +be similar in spirit to the present version, but may differ in detail to +address new problems or concerns. + +Each version is given a distinguishing version number. If the Program +specifies a version number of this License which applies to it and "any +later version", you have the option of following the terms and conditions +either of that version or of any later version published by the Free +Software Foundation. If the Program does not specify a version number of +this License, you may choose any version ever published by the Free Software +Foundation. + + 10. If you wish to incorporate parts of the Program into other free +programs whose distribution conditions are different, write to the author +to ask for permission. For software which is copyrighted by the Free +Software Foundation, write to the Free Software Foundation; we sometimes +make exceptions for this. Our decision will be guided by the two goals +of preserving the free status of all derivatives of our free software and +of promoting the sharing and reuse of software generally. + + NO WARRANTY + + 11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY +FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN +OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES +PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED +OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF +MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS +TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE +PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, +REPAIR OR CORRECTION. + + 12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING +WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR +REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, +INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING +OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED +TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY +YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER +PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE +POSSIBILITY OF SUCH DAMAGES. + + END OF TERMS AND CONDITIONS + + + How to Apply These Terms to Your New Programs + + If you develop a new program, and you want it to be of the greatest +possible use to the public, the best way to achieve this is to make it +free software which everyone can redistribute and change under these terms. + + To do so, attach the following notices to the program. It is safest +to attach them to the start of each source file to most effectively +convey the exclusion of warranty; and each file should have at least +the "copyright" line and a pointer to where the full notice is found. + + <one line to give the program's name and a brief idea of what it does.> + Copyright (C) 19yy <name of author> + + This program is free software; you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation; either version 2 of the License, or + (at your option) any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program; if not, write to the Free Software + Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA + + +Also add information on how to contact you by electronic and paper mail. + +If the program is interactive, make it output a short notice like this +when it starts in an interactive mode: + + Gnomovision version 69, Copyright (C) 19yy name of author + Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type `show w'. + This is free software, and you are welcome to redistribute it + under certain conditions; type `show c' for details. + +The hypothetical commands `show w' and `show c' should show the appropriate +parts of the General Public License. Of course, the commands you use may +be called something other than `show w' and `show c'; they could even be +mouse-clicks or menu items--whatever suits your program. + +You should also get your employer (if you work as a programmer) or your +school, if any, to sign a "copyright disclaimer" for the program, if +necessary. Here is a sample; alter the names: + + Yoyodyne, Inc., hereby disclaims all copyright interest in the program + `Gnomovision' (which makes passes at compilers) written by James Hacker. + + <signature of Ty Coon>, 1 April 1989 + Ty Coon, President of Vice + +This General Public License does not permit incorporating your program into +proprietary programs. If your program is a subroutine library, you may +consider it more useful to permit linking proprietary applications with the +library. If this is what you want to do, use the GNU Library General +Public License instead of this License. + diff --git a/pix_recNN/help-pix_recNN.pd b/pix_recNN/help-pix_recNN.pd new file mode 100755 index 0000000..4236941 --- /dev/null +++ b/pix_recNN/help-pix_recNN.pd @@ -0,0 +1,146 @@ +#N canvas 871 74 498 783 10; +#X obj 36 327 gemwin; +#X msg 36 301 create \, 1; +#N canvas 75 72 765 790 pix2sig_stuff~ 0; +#X obj 120 35 gemhead; +#X obj 120 132 pix_texture; +#X obj 119 274 outlet~; +#X obj 139 185 square 4; +#X obj 139 163 separator; +#X obj 61 165 separator; +#X obj 120 101 pix_video; +#X msg 186 64 dimen 640 480; +#X obj 26 36 block~ 2048; +#X msg 186 38 dimen 320 240; +#X msg 76 535 getprecision; +#X msg 93 696 getlearnrate; +#X msg 65 671 learnrate 0.2; +#X msg 424 459 getneurons; +#X msg 404 206 train; +#X obj 31 227 inlet~; +#X msg 65 647 learnrate 0.05; +#X msg 381 708 getmemory; +#X msg 361 639 memory 0; +#X msg 361 660 memory 1; +#X obj 61 252 pix_recNN; +#X text 296 49 <- input dimension; +#X obj 78 226 r \$0-recNN; +#X obj 62 564 s \$0-recNN; +#X msg 76 498 precision \$1; +#X floatatom 76 481 5 0 0 0 - - -; +#X text 42 335 precision:; +#X text 53 358 1: means every pixel is used in calculation; +#X text 53 372 2: only every second pixel; +#X text 53 386 ...; +#X obj 62 411 loadbang; +#X msg 407 401 neurons 2048; +#X msg 407 422 neurons 64; +#X obj 407 492 s \$0-recNN; +#X text 403 336 neurons:; +#X text 416 357 nr. of neurons used in the calculation; +#X text 415 370 (_MUST_ be the same as the buffersize !!!); +#X text 43 615 learnrate:; +#X obj 65 725 s \$0-recNN; +#X msg 361 681 memory 3; +#X obj 361 741 s \$0-recNN; +#X text 343 543 memory:; +#X text 356 565 this determines \, how much values from the past the +recurrent net considers in the calculation; +#X text 357 604 (be carefull with large values !!!); +#X msg 62 456 precision 1; +#X msg 62 436 precision 4; +#X obj 404 233 s \$0-recNN; +#X text 397 126 train:; +#X text 417 152 trains the neural net; +#X text 418 166 (the current video frame to; +#X text 425 178 the current audio block); +#X connect 0 0 6 0; +#X connect 1 0 4 0; +#X connect 1 0 5 0; +#X connect 4 0 3 0; +#X connect 5 0 20 0; +#X connect 6 0 1 0; +#X connect 7 0 6 0; +#X connect 9 0 6 0; +#X connect 10 0 23 0; +#X connect 11 0 38 0; +#X connect 12 0 38 0; +#X connect 13 0 33 0; +#X connect 14 0 46 0; +#X connect 15 0 20 0; +#X connect 16 0 38 0; +#X connect 17 0 40 0; +#X connect 18 0 40 0; +#X connect 19 0 40 0; +#X connect 20 1 2 0; +#X connect 22 0 20 0; +#X connect 24 0 23 0; +#X connect 25 0 24 0; +#X connect 30 0 45 0; +#X connect 31 0 33 0; +#X connect 32 0 33 0; +#X connect 39 0 40 0; +#X connect 44 0 23 0; +#X connect 45 0 23 0; +#X restore 89 542 pd pix2sig_stuff~; +#X msg 110 302 0 \, destroy; +#X obj 116 587 unsig~; +#X obj 206 432 osc~ 440; +#X obj 205 456 *~; +#X obj 237 456 tgl 15 0 empty empty empty 0 -6 0 8 -262144 -1 -1 0 +1; +#X obj 207 496 sig~ 0; +#X floatatom 117 608 8 0 0 0 - - -; +#X text 25 23 pix_recNN:; +#X text 24 57 pix_recNN is an instument/interface. This instrument +should be useful as a general experimental video interface to generate +audio. You can train the neural net with playing audio samples to specific +video frames in real-time. The main interest for me was not to train +the net exactly to reproduce these samples \, but to make experimental +sounds \, which are "between" all the trained samples.; +#X text 22 214 (but this version is unfinished - e.g. the training +algorithm must be tuned etc. - so it's only a very basic prototype...) +; +#X text 207 320 <- create gemwin; +#X obj 41 442 readsf~; +#X obj 41 401 openpanel; +#X msg 41 421 open \$1; +#X obj 41 380 bng 15 250 50 0 empty empty empty 0 -6 0 8 -262144 -1 +-1; +#X text 67 379 <- load sample for training; +#X obj 122 417 tgl 25 0 empty empty empty 0 -6 0 8 -195568 -1 -1 0 +1; +#X floatatom 206 414 5 0 0 0 - - -; +#X text 272 431 <- simple osc for training; +#X text 262 497 <- to train silence; +#X obj 85 463 bng 15 250 50 0 empty empty empty 0 -6 0 8 -262144 -1 +-1; +#X text 216 541 <- audio/video work; +#X obj 90 684 dac~; +#X obj 90 659 *~; +#X obj 118 659 dbtorms; +#X floatatom 118 641 5 0 0 0 - - -; +#X text 168 638 <- outvol in dB; +#X text 22 170 pix_recNN uses a 2 layer recurrent neural net (for more +detailed info look at the source code.); +#X text 119 737 Georg Holzmann <grh@mur.at> \, 2004; +#X connect 1 0 0 0; +#X connect 2 0 4 0; +#X connect 2 0 26 0; +#X connect 3 0 0 0; +#X connect 4 0 9 0; +#X connect 5 0 6 0; +#X connect 6 0 2 0; +#X connect 7 0 6 1; +#X connect 8 0 2 0; +#X connect 14 0 2 0; +#X connect 14 1 23 0; +#X connect 15 0 16 0; +#X connect 16 0 14 0; +#X connect 17 0 15 0; +#X connect 19 0 14 0; +#X connect 20 0 5 0; +#X connect 26 0 25 0; +#X connect 26 0 25 1; +#X connect 27 0 26 1; +#X connect 28 0 27 0; diff --git a/pix_recNN/pix_recNN.cpp b/pix_recNN/pix_recNN.cpp new file mode 100755 index 0000000..299625a --- /dev/null +++ b/pix_recNN/pix_recNN.cpp @@ -0,0 +1,423 @@ +///////////////////////////////////////////////////////////////////////////// +// +// GEM - Graphics Environment for Multimedia +// +// pix_recNN +// +// Implementation file +// +// Copyright (c) 2005 Georg Holzmann <grh@gmx.at> +// (and of course lot's of other developers for PD and GEM) +// +// For information on usage and redistribution, and for a DISCLAIMER OF ALL +// WARRANTIES, see the file, "GEM.LICENSE.TERMS" in this distribution. +// +///////////////////////////////////////////////////////////////////////////// + +#include "pix_recNN.h" + +CPPEXTERN_NEW_WITH_THREE_ARGS(pix_recNN, t_floatarg, A_DEFFLOAT, + t_floatarg, A_DEFFLOAT, t_floatarg, A_DEFFLOAT) + +//---------------------------------------------------------- +/* Constructor + */ + pix_recNN::pix_recNN(t_floatarg arg0=64, t_floatarg arg1=1, t_floatarg arg2=1) : + m_data_(NULL), m_xsize_(0), m_ysize_(0), m_csize_(0), + train_on_(false), net_(NULL), temp_pix_(NULL) +{ + // init args ????????????????????????????????? + neuron_nr_=2048; //static_cast<int>((arg0<0)?2:arg0); + memory_=0; + precision_=2; //static_cast<int>((arg2<1)?1:arg2); + //post("arg0: %d, arg1: %d",arg0,arg1); + + // generate the in- and outlet: + out0_ = outlet_new(this->x_obj, &s_signal); + inlet_new(this->x_obj, &this->x_obj->ob_pd, &s_signal, &s_signal); + + // set random seed: + srand( (unsigned)time(NULL) ); + + // build the net + buildNewNet(); +} + +//---------------------------------------------------------- +/* Destructor + */ +pix_recNN::~pix_recNN() +{ + outlet_free(out0_); + m_data_ = NULL; + m_xsize_ = 0; + m_ysize_ = 0; + + // delete net + delete net_; + + // delete temp_pix_ + for(int i=0; i<neuron_nr_; i++) + delete[] temp_pix_[i]; + delete[] temp_pix_; +} + +//---------------------------------------------------------- +/* a helper to build a new net + */ +void pix_recNN::buildNewNet() +{ + try + { + if(net_) + delete net_; + + if(temp_pix_) + { + for(int i=0; i<neuron_nr_; i++) + delete[] temp_pix_[i]; + delete[] temp_pix_; + } + + // create the net + net_ = new NNet<RecurrentNeuron,RecurrentNeuron>(3,3,neuron_nr_,memory_, + 0,TANH,LINEAR); + if(!net_) + { + post("pix_recNN~: no memory for neural nets!"); + net_=NULL; + return; + } + + // create the temp_pix + temp_pix_ = new float*[neuron_nr_]; + if(!temp_pix_) + { + post("pix_recNN~: no memory for temp_pix_!"); + temp_pix_=NULL; + return; + } + for(int i=0; i<neuron_nr_; i++) + { + temp_pix_[i] = new float[3]; + if(!temp_pix_[i]) + { + post("pix_recNN~: no memory for temp_pix_!"); + temp_pix_=NULL; + return; + } + } + + // initialize temp_pix_ with 0 + for(int i=0; i<neuron_nr_; i++) + { + for(int j=0; j<3; j++) + { + temp_pix_[i][j] = 0; + } + } + + // init the net + net_->create(); + net_->initRand(-1,1); + net_->setRange(255); + net_->setLearningRate(0.01); + } + catch(NNExcept &exc) + { + post("pix_recNN: %s", exc.what().c_str()); + } +} + +//---------------------------------------------------------- +/* processImage + */ +void pix_recNN::processImage(imageStruct &image) +{ + m_data_ = image.data; + m_xsize_ = image.xsize; + m_ysize_ = image.ysize; + m_csize_ = image.csize; + m_format_ = image.format; +} + +//---------------------------------------------------------- +/* DSP perform + */ +t_int* pix_recNN::perform(t_int* w) +{ + pix_recNN *x = GetMyClass((void*)w[1]); + t_float* in_signal = (t_float*)(w[2]); + t_float* out_signal = (t_float*)(w[3]); + int blocksize = (t_int)(w[4]); + + if(blocksize != x->neuron_nr_) + { + post("pix_recNN~: neurons and buffersize are different! You MUST have the same neuron nr as the buffersize !!!"); + post("neurons: %d, buffersize: %d", x->neuron_nr_, blocksize); + return (w+5); + } + + + // some needed data + long int pix_size = x->m_xsize_ * x->m_ysize_; + int pix_blocksize = (blocksize<pix_size)?blocksize:pix_size; + + // splits the frame into slices, so that the average + // of one slice can be used for the network input + // there are as much slices as the buffsize is + + float nr = sqrt(blocksize); // the number of slices at the + // x- and y-axis + + float x_slice = x->m_xsize_ / nr; // x size of a slice in pixels + float y_slice = x->m_ysize_ / nr; // x size of a slice in pixels + int x_slice_int = static_cast<int>( x_slice ); + int y_slice_int = static_cast<int>( y_slice ); + + // the number of slices on one axis (is the float nr + // from above rounded up) + int slice_nr = static_cast<int>(nr) + 1; + + + if (x->m_data_) + { + switch(x->m_format_) + { + case GL_RGBA: + { + for(int n=0; n<pix_blocksize; n++) + { + //post("Block %d:",n); + + // calulate the pixel in left upper edge of every slice + int lu_pix_x = static_cast<int>( (n % slice_nr) * x_slice ); + int lu_pix_y = static_cast<int>( static_cast<int>(n / slice_nr) * y_slice ); + + //post("lu_pix: %d, %d", lu_pix_x, lu_pix_y); + + // now sum up all the pixels of one slice and then divide through the + // number of pixels + // the storage to sum the pixels: + unsigned long int temp_data[3] = { 0, 0, 0 }; + + // only for optimization: + int helper1 = x->m_xsize_ * x->m_csize_; + int add_count = 0; + + for(int i=0; i<x_slice_int; i+=x->precision_) + { + for(int j=0; j<y_slice_int; j+=x->precision_) + { + // the way to access the pixels: (C=chRed, chBlue, ...) + //data[Y * xsize * csize + X * csize + C] + + //post("current pixel: %d %d", + // ((lu_pix_x+i)%x->m_xsize), ((lu_pix_y+j)%x->m_ysize) ); + + temp_data[0] += x->m_data_[ + (lu_pix_y+j) * helper1 + + (lu_pix_x+i) * x->m_csize_ + chRed ]; + + temp_data[1] += x->m_data_[ + ((lu_pix_y+j)) * helper1 + + ((lu_pix_x+i)) * x->m_csize_ + chGreen ]; + + temp_data[2] += x->m_data_[ + ((lu_pix_y+j)%x->m_ysize_) * helper1 + + ((lu_pix_x+i)%x->m_xsize_) * x->m_csize_ + chBlue ]; + + add_count++; + } + } + + x->temp_pix_[n][0] = temp_data[0] / add_count; + x->temp_pix_[n][1] = temp_data[1] / add_count; + x->temp_pix_[n][2] = temp_data[2] / add_count; + } + + // learning, or calculation: + if(!x->train_on_) + x->net_->calculate(x->temp_pix_, out_signal); + else + x->net_->trainBTT(x->temp_pix_, out_signal, in_signal); + + } + break; + + default: + post("RGB only for now"); + } + } + else + { + pix_blocksize=blocksize; + while (pix_blocksize--) *out_signal++=0; + } + + x->train_on_=false; + return (w+5); +} + +//---------------------------------------------------------- +/* DSP-Message + */ +void pix_recNN::dspMess(void *data, t_signal** sp) +{ + dsp_add(perform, 4, data, sp[0]->s_vec, sp[1]->s_vec, sp[0]->s_n); +} + +//---------------------------------------------------------- +/* saves the contents of the current net to file + */ +void pix_recNN::saveNet(string filename) +{ + try + { + net_->save(filename); + post("pix_recNN~: saved to output-file %s", filename.c_str()); + } + catch(NNExcept &exc) + { + post("pix_recNN: %s", exc.what().c_str()); + } +} + +//---------------------------------------------------------- +/* loads the parameters of the net from file + */ +void pix_recNN::loadNet(string filename) +{ + try + { + net_->load(filename); + post("pix_recNN~: loaded file %s", filename.c_str()); + } + catch(NNExcept &exc) + { + post("pix_recNN: %s", exc.what().c_str()); + } +} + +//---------------------------------------------------------- +/* setup callback + */ +void pix_recNN::obj_setupCallback(t_class *classPtr) +{ + class_addcreator((t_newmethod)_classpix_recNN, gensym("pix_recNN~"), A_NULL); + + class_addmethod(classPtr, (t_method)pix_recNN::setNeurons, + gensym("neurons"), A_FLOAT, A_NULL); + class_addmethod(classPtr, (t_method)pix_recNN::getNeurons, + gensym("getneurons"), A_NULL); + class_addmethod(classPtr, (t_method)pix_recNN::setMemory, + gensym("memory"), A_FLOAT, A_NULL); + class_addmethod(classPtr, (t_method)pix_recNN::getMemory, + gensym("getmemory"), A_NULL); + class_addmethod(classPtr, (t_method)pix_recNN::setPrecision, + gensym("precision"), A_FLOAT, A_NULL); + class_addmethod(classPtr, (t_method)pix_recNN::getPrecision, + gensym("getprecision"), A_NULL); + class_addmethod(classPtr, (t_method)pix_recNN::setTrainOn, + gensym("train"), A_NULL); + class_addmethod(classPtr, (t_method)pix_recNN::setLearnrate, + gensym("learnrate"), A_FLOAT, A_NULL); + class_addmethod(classPtr, (t_method)pix_recNN::getLearnrate, + gensym("getlearnrate"), A_NULL); + class_addmethod(classPtr, (t_method)pix_recNN::saveToFile, + gensym("save"), A_SYMBOL, A_NULL); + class_addmethod(classPtr, (t_method)pix_recNN::loadFromFile, + gensym("load"), A_SYMBOL, A_NULL); + + class_addmethod(classPtr, (t_method)pix_recNN::dspMessCallback, + gensym("dsp"), A_NULL); + class_addmethod(classPtr, nullfn, gensym("signal"), A_NULL); +} + +//---------------------------------------------------------- +/* DSP callback + */ +void pix_recNN::dspMessCallback(void *data, t_signal** sp) +{ + GetMyClass(data)->dspMess(data, sp); +} + +//---------------------------------------------------------- +/* sets the precision + */ +void pix_recNN::setPrecision(void *data, t_floatarg precision) +{ + GetMyClass(data)->precision_ = + (precision<1) ? 1 : static_cast<int>(precision); +} +void pix_recNN::getPrecision(void *data) +{ + post("pix_recNN~: precision: %d",GetMyClass(data)->precision_); +} + +//---------------------------------------------------------- +/* method to train the network + */ +void pix_recNN::setTrainOn(void *data) +{ + GetMyClass(data)->train_on_ = true; +} + +//---------------------------------------------------------- +/* changes the number of neurons + * (which should be the same as the audio buffer) + * ATTENTION: a new net will be initialized + */ +void pix_recNN::setNeurons(void *data, t_floatarg neurons) +{ + GetMyClass(data)->neuron_nr_ = + (neurons<1) ? 1 : static_cast<int>(neurons); + + GetMyClass(data)->buildNewNet(); +} +void pix_recNN::getNeurons(void *data) +{ + post("pix_recNN~: nr of neurons: %d (MUST be the same as buffersize!)", + GetMyClass(data)->neuron_nr_); +} + +//---------------------------------------------------------- +/* changes the nblock size + * ATTENTION: a new net will be initialized + */ +void pix_recNN::setMemory(void *data, t_floatarg memory) +{ + GetMyClass(data)->memory_ = + (memory<0) ? 0 : static_cast<int>(memory); + + GetMyClass(data)->buildNewNet(); +} +void pix_recNN::getMemory(void *data) +{ + post("pix_recNN~: memory: %d", + GetMyClass(data)->memory_); +} + +//---------------------------------------------------------- +/* sets the learnrate of the net + */ +void pix_recNN::setLearnrate(void *data, t_floatarg learn_rate) +{ + GetMyClass(data)->net_->setLearningRate(learn_rate); +} +void pix_recNN::getLearnrate(void *data) +{ + post("pix_recNN~: learning rate: %f",GetMyClass(data)->net_->getLearningRate()); +} + +//---------------------------------------------------------- +/* FileIO-stuff + */ +void pix_recNN::saveToFile(void *data, t_symbol *filename) +{ + GetMyClass(data)->saveNet(filename->s_name); +} +void pix_recNN::loadFromFile(void *data, t_symbol *filename) +{ + GetMyClass(data)->loadNet(filename->s_name); +} diff --git a/pix_recNN/pix_recNN.h b/pix_recNN/pix_recNN.h new file mode 100755 index 0000000..944ebd3 --- /dev/null +++ b/pix_recNN/pix_recNN.h @@ -0,0 +1,204 @@ +///////////////////////////////////////////////////////////////////////////// +// +// GEM - Graphics Environment for Multimedia +// +// pix_recNN~ +// Calculates an audio signal out of a video frame +// with a recurrent neural network +// +// (see RecurrentNeuralNet.h for more info) +// +// header file +// +// Copyright (c) 2005 Georg Holzmann <grh@gmx.at> +// (and of course lot's of other developers for PD and GEM) +// +// For information on usage and redistribution, and for a DISCLAIMER OF ALL +// WARRANTIES, see the file, "GEM.LICENSE.TERMS" in this distribution. +// +///////////////////////////////////////////////////////////////////////////// + + +#ifndef _INCLUDE_PIX_RECNN_H__ +#define _INCLUDE_PIX_RECNN_H__ + +#include <string> +#include <sstream> +#include <fstream> +#include "Base/GemPixObj.h" +#include "NNet.h" +#include "RecurrentNeuron.h" + + +using std::string; +using std::endl; +using std::ifstream; +using std::ofstream; +using std::istringstream; + +using namespace TheBrain; + + +/*----------------------------------------------------------------- + * CLASS + * pix_recNN~ + * + * calculates an audio signal out of a video frame with + * a recurrent neural network + * + * KEYWORDS + * pix audio + * + * DESCRIPTION + * 1 signal-outlet + */ +class GEM_EXTERN pix_recNN : public GemPixObj +{ + CPPEXTERN_HEADER(pix_recNN, GemPixObj) + + public: + + /* Constructor + */ + pix_recNN(t_floatarg arg0, t_floatarg arg1, t_floatarg arg2); + + protected: + + /* Destructor + */ + virtual ~pix_recNN(); + + + //----------------------------------- + /* Image STUFF: + */ + + /* The pixBlock with the current image + * pixBlock m_pixBlock; + */ + unsigned char *m_data_; + int m_xsize_; + int m_ysize_; + int m_csize_; + int m_format_; + + /* precision of the image: + * 1 means every pixel is taken for the calculation, + * 2 every second pixel, 3 every third, ... + */ + int precision_; + + /* temporary float for calculation + */ + float **temp_pix_; + + /* processImage + */ + virtual void processImage(imageStruct &image); + + + //----------------------------------- + /* Neural Network STUFF: + */ + + /* the neural net + * (size: buffsize) + */ + NNet<RecurrentNeuron,RecurrentNeuron> *net_; + + /* training modus on + * (will only be on for one audio buffer) + */ + bool train_on_; + + /* the number of neurons, which should be + * THE SAME as the audio buffer size + */ + int neuron_nr_; + + /* memory determines, how much results from the past + * are used to calculate an output value + * (0 means only the result from the current frame, + * 2 also from the last frame, etc.) + */ + int memory_; + + + //----------------------------------- + /* Audio STUFF: + */ + + /* the outlet + */ + t_outlet *out0_; + + /* DSP perform + */ + static t_int* perform(t_int* w); + + /* DSP-Message + */ + virtual void dspMess(void *data, t_signal** sp); + + + //----------------------------------- + /* File IO: + */ + + /* saves the contents of the current net to file + */ + virtual void saveNet(string filename); + + /* loads the parameters of the net from file + */ + virtual void loadNet(string filename); + + private: + + /* a helper to build a new net + */ + virtual void buildNewNet(); + + //----------------------------------- + /* static members + * (interface to the PD world) + */ + + /* set/get the precision of the image calculation + */ + static void setPrecision(void *data, t_floatarg precision); + static void getPrecision(void *data); + + /* method to train the network + */ + static void setTrainOn(void *data); + + /* changes the number of neurons + * (which should be the same as the audio buffer) + * ATTENTION: a new net will be initialized + */ + static void setNeurons(void *data, t_floatarg neurons); + static void getNeurons(void *data); + + /* changes the nblock size + * ATTENTION: a new net will be initialized + */ + static void setMemory(void *data, t_floatarg memory); + static void getMemory(void *data); + + /* sets the learnrate of the net + */ + static void setLearnrate(void *data, t_floatarg learn_rate); + static void getLearnrate(void *data); + + /* DSP callback + */ + static void dspMessCallback(void* data, t_signal** sp); + + /* File IO: + */ + static void saveToFile(void *data, t_symbol *filename); + static void loadFromFile(void *data, t_symbol *filename); +}; + +#endif // for header file diff --git a/pix_recNN/readme.txt b/pix_recNN/readme.txt new file mode 100755 index 0000000..6372504 --- /dev/null +++ b/pix_recNN/readme.txt @@ -0,0 +1,27 @@ +pix_recNN - by Georg Holzmann <grh@mur.at>, 2004 +look at http://grh.mur.at/software/thebrain.html + + +--------------------------------license--------------------------------------- + +This program is free software; you can redistribute it and/or +modify it under the terms of the GNU General Public License +as published by the Free Software Foundation; either version 2 +of the License, or (at your option) any later version. + +This program is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details. + +You should have received a copy of the GNU General Public License +along with this program; if not, write to the Free Software +Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. + +In the official pix_recNN distribution, the GNU General Public License is +in the file gpl.txt + + +-------------------------------information----------------------------------- + +see the PD help patch
\ No newline at end of file |