#N canvas 556 0 813 845 10;
#X msg 82 375 add ge;
#X obj 33 24 cnv 15 404 54 empty empty empty 22 25 0 18 -1 -66577 0
;
#X obj 35 26 cnv 15 400 50 empty empty PDContainer 22 25 0 18 -228992
-66577 0;
#X text 295 36 help file of;
#X text 40 98 init arg: namespace;
#X msg 479 341 print;
#X msg 479 455 clear;
#X msg 479 693 help;
#X msg 479 282 getnamespace;
#X msg 479 493 clearall;
#X obj 479 747 print BBB;
#X obj 82 463 print AAA;
#X text 590 307 <- change namespace;
#X msg 479 306 namespace grix;
#X text 526 342 <- print all the data of the;
#X text 545 357 current namespace;
#X text 527 455 <- clear all the data of the;
#X text 548 470 current namespace;
#X text 547 495 <- clear all the data in all;
#X text 568 510 same containers (maybe;
#X text 570 525 you shouldn't use this);
#X text 579 284 <- get current namespace;
#X text 478 230 general operations:;
#X msg 82 349 add bla bal tuff;
#X msg 82 399 add 4 f 3;
#X msg 82 324 add \$1;
#X floatatom 82 286 5 0 0 0 - - -;
#X symbolatom 129 288 10 0 0 0 - - -;
#X msg 232 397 list damm 4345 it;
#X floatatom 232 303 5 0 0 0 - - -;
#X symbolatom 232 321 10 0 0 0 - - -;
#X msg 232 373 hacka 45;
#X msg 232 350 3 4 krschi;
#X text 110 261 key:;
#X text 242 272 value:;
#X obj 79 717 print AAA;
#X floatatom 79 540 5 0 0 0 - - -;
#X symbolatom 126 542 10 0 0 0 - - -;
#X text 136 509 get \, remove data:;
#X msg 79 578 get \$1;
#X msg 79 603 get bla bal tuff;
#X msg 79 629 get ge;
#X msg 79 653 get 4 f 3;
#X floatatom 222 544 5 0 0 0 - - -;
#X symbolatom 269 546 10 0 0 0 - - -;
#X msg 222 582 remove \$1;
#X msg 222 607 remove bla bal tuff;
#X msg 222 633 remove ge;
#X msg 222 657 remove 4 f 3;
#X text 40 131 Multimaps are just like maps except that a key can be
associated with several values. Multimap is a Sorted Associative Container
and also a Multiple Associative Container \, meaning that there is
no limit on the number of elements with the same key. (see also Map)
;
#X text 275 53 ::: h_multimap :::;
#X obj 82 440 h_multimap dampta;
#X obj 79 694 h_multimap dampta;
#X obj 479 724 h_multimap dampta;
#X floatatom 136 750 5 0 0 0 - - -;
#X text 111 231 add data to the multimap:;
#X text 180 751 <- nr of values at the specific key;
#X msg 479 638 getsize;
#X text 566 651 outlet);
#X text 544 637 <- get the size (at 3rd;
#X obj 593 747 print size;
#X obj 500 24 cnv 15 204 120 empty empty empty 20 12 0 14 -66577 -66577
0;
#X obj 502 26 cnv 15 200 116 empty empty ReadMe: 65 15 0 14 -262131
-143491 0;
#N canvas 674 0 511 843 General_Concept 0;
#X text 37 165 This library was made for algorithmic composition and
of course for all other algorithms. I came into troubles with making
bigger musical structures in PD with send-receive pairs \, arrays \,
etc. So I tried to make it possible \, to have access to some storage
in a whole patch.;
#X text 131 131 ::: GOAL OF THE LIBRARY :::;
#X text 39 428 For communication I use namespaces. Every Container
with the same namespace (and the same container type) has access to
the same data. So you can modify and get this data everywhere in the
patch. For local namespaces use names with \$0.;
#X text 140 266 ::: DATASTRUCTURES :::;
#X text 156 397 ::: NAMESPACES :::;
#X obj 33 24 cnv 15 404 54 empty empty empty 22 25 0 18 -1 -66577 0
;
#X obj 35 26 cnv 15 400 50 empty empty PDContainer 22 25 0 18 -228992
-66577 0;
#N canvas 434 247 671 362 namespace_example 0;
#X obj 43 176 h_stack hallawum;
#X msg 43 151 push some data;
#X text 34 25 ::: NAMESPACE EXAMPLE :::;
#X text 166 150 <- add the list "some data" to the stack;
#X text 187 167 (namespace "hallawum");
#X obj 41 254 h_stack hallawum;
#X msg 41 231 top;
#X text 76 231 <- get the data (same namespace);
#X msg 341 235 top;
#X obj 341 258 h_stack kaletom;
#X obj 341 281 print BBB;
#X obj 41 277 print AAA;
#X text 376 235 <- get the data (different namespace);
#X text 475 271 not possible !!!;
#X text 35 65 In different namespaces you have access to different
data. Here with the datastructure "stack". The two objects with the
same namespace (here "hallawum") are sharing their data!;
#X connect 1 0 0 0;
#X connect 5 0 11 0;
#X connect 6 0 5 0;
#X connect 8 0 9 0;
#X connect 9 0 10 0;
#X restore 39 503 pd namespace_example;
#X text 161 554 ::: DATATYPES :::;
#X text 38 296 As storage datastructures I implemented the C++ STL
(Standard Template Library) Containers in PD. Currently following datastructures
are available (prefixed with h_): h_map \, h_multimap \, h_set \, h_multiset
\, h_vector \, h_list \, h_deque \, h_queue \, h_priority_queue and
h_stack.;
#N canvas 438 21 583 739 map_example 0;
#X obj 45 297 h_map \$0-data;
#X msg 45 256 add data1;
#X msg 131 273 1 4 3 5 6;
#X obj 45 220 t b b;
#X obj 45 194 bng 15 250 50 0 empty empty empty 0 -6 0 8 -262144 -1
-1;
#X obj 321 303 h_map \$0-data;
#X obj 321 226 t b b;
#X obj 321 200 bng 15 250 50 0 empty empty empty 0 -6 0 8 -262144 -1
-1;
#X msg 321 262 add data2;
#X msg 407 279 6 4 5 1 2;
#X obj 118 402 h_map \$0-data;
#X msg 118 376 print;
#X text 170 375 <- see whats in the container;
#X obj 118 556 h_map \$0-data;
#X msg 118 485 get data1;
#X msg 142 519 get data2;
#X obj 118 578 print AAA;
#X text 202 485 <- get data1;
#X text 229 520 <- get data2;
#X text 345 199 <- add to key data2 a list;
#X text 69 193 <- add to key data1 a list;
#X text 32 32 ::: MAP_EXAMPLE :::;
#X text 34 72 With the datastructure "map" it's for example possible
to make send-receive pairs \, you don't have to update the send-receive
pairs all the time (like [value]) \, you can use send-receive "namespaces"
\, ...;
#X text 111 659 ( If you use lists as key you can also make a multidimensional
matrix ... );
#X connect 1 0 0 0;
#X connect 2 0 0 1;
#X connect 3 0 1 0;
#X connect 3 1 2 0;
#X connect 4 0 3 0;
#X connect 6 0 8 0;
#X connect 6 1 9 0;
#X connect 7 0 6 0;
#X connect 8 0 5 0;
#X connect 9 0 5 1;
#X connect 11 0 10 0;
#X connect 13 0 16 0;
#X connect 14 0 13 0;
#X connect 15 0 13 0;
#X restore 41 615 pd map_example;
#X text 273 34 general concept of;
#X text 274 52 PDContainer;
#X text 41 579 In the containers you can save all of the PD build-in
datatypes: lists \, floats \, and symbol.;
#N canvas 215 140 716 600 save_load_example 0;
#X text 27 23 ::: SAVE/LOAD EXAMPLE :::;
#X msg 68 229 pushback one word;
#X msg 90 260 pushback an other word;
#X msg 114 290 pushback something else;
#X obj 68 198 t b b b;
#X obj 68 168 bng 15 250 50 0 empty empty empty 0 -6 0 8 -262144 -1
-1;
#X obj 68 324 h_list \$0-local;
#X text 93 168 <- add these three lists to h_list;
#X obj 333 321 h_list \$0-local;
#X msg 358 285 print;
#X obj 140 477 h_set blablu;
#X msg 140 413 read example.dat;
#X text 274 413 <- read the same data now into a h_set;
#X text 26 67 You can save and load data from and to disk. So you can
also exchange data through different datastructures with the same data-format
(here from a h_list to a h_set).;
#X msg 178 441 print;
#X msg 333 207 saveXML example.xml;
#X text 457 238 <- save data as file;
#X msg 333 238 save example.dat;
#X text 477 208 <- save data as XML file;
#X msg 140 378 readXML example.xml;
#X text 283 379 <- read the same XML data now into a h_set;
#X text 22 529 Please use the XML fileformat if possible \, because
it's easier to edit in an external editor and the XML parser is much
more stable !;
#X connect 1 0 6 0;
#X connect 2 0 6 0;
#X connect 3 0 6 0;
#X connect 4 0 1 0;
#X connect 4 1 2 0;
#X connect 4 2 3 0;
#X connect 5 0 4 0;
#X connect 9 0 8 0;
#X connect 11 0 10 0;
#X connect 14 0 10 0;
#X connect 15 0 8 0;
#X connect 17 0 8 0;
#X connect 19 0 10 0;
#X restore 40 797 pd save_load_example;
#X text 41 696 All the data of all containers can be saved to disk.
So you can also manually edit the file with an editor (which is sometimes
much faster) and then load it in PD into a container. You can also
load data from other containers. Please use the XML fileformat if possible
\, because it's easier to edit in an external editor and the XML parser
is much more stable.;
#X text 164 671 ::: SAVE/LOAD :::;
#X restore 536 62 pd General_Concept;
#N canvas 205 0 993 742 Container_Explanation 0;
#X obj 14 13 cnv 15 404 54 empty empty empty 22 25 0 18 -1 -66577 0
;
#X obj 16 15 cnv 15 400 50 empty empty PDContainer 22 25 0 18 -228992
-66577 0;
#X text 254 23 general explation of;
#X text 254 40 the datastructures;
#X text 23 655 A vector is a sequence that supports access to all elements
via index (like an array) and fast insertion and removal of elements
at the end. The number of elements in a vector may vary dynamically.
;
#X obj 189 627 h_vector;
#X text 500 654 Fast insertion and removal anywhere \, all the other
elements move up. But a list provides only sequential access (not via
index !). A list is a doubly linked list.;
#X obj 680 628 h_list;
#X obj 189 773 h_deque;
#X text 498 801 A queue is a "first in first out" (FIFO) data structure.
That is \, elements are added to the back of the queue (push) and may
be removed from the front (pop).;
#X obj 679 774 h_queue;
#X text 22 951 A priority queue is also a "first in first out" (FIFO)
data structure \, but you can give the elements a priority. So the
elements with a higher priority are automatically inserted before all
other elements with a lower priority.;
#X obj 154 924 h_priority_queue;
#X text 20 800 A deque (double ended queue \, pronounced "deck") is
very much like a vector: like vector \, it is a sequence that supports
access to all elements via index. The main way in which deque differs
from vector is that fast insertion and removal of elements is possible
at the beginning _and_ the end.;
#X text 22 232 Maps represent a mapping from one type (the key type)
to another type (the value type). You can associate a value with a
key \, or find the value associated with a key \, very efficiently.
Map is a Sorted Associative Container and it is also a Unique Associative
Container \, meaning that no two elements have the same key. (see Multimap
for more elements with the same key);
#X obj 188 203 h_map;
#X text 492 231 Multimaps are just like maps except that a key can
be associated with several values. Multimap is a Sorted Associative
Container and also a Multiple Associative Container \, meaning that
there is no limit on the number of elements with the same key. (see
also Map);
#X obj 643 201 h_multimap;
#X text 24 419 Sets allow you to add and delete elements. Afterwards
you can look if an element is set. Set is a Sorted Associative Container
and a Unique Associative Container \, meaning that no two elements
are the same. (see Multiset to have several copies of the same element)
;
#X obj 187 392 h_set;
#X text 493 419 Multisets are just like sets \, except that you can
have several copies of the same element. Multiset is a Sorted Associative
Container and a Multiple Associative Container \, meaning that two
or more elements may be identical. (see also Set);
#X obj 642 391 h_multiset;
#X text 339 167 :::: ASSOCIATIVE CONTAINERS ::::;
#X text 393 592 :::: SEQUENCES ::::;
#X text 289 1099 (look for help at all the objects for more information)
;
#X text 35 87 PDContainer contains the following datastructures:;
#X text 399 86 map \, nultimap \, set \, multiset \, vector \, list
\, deque \, queue \, stack \, priority queue;
#X obj 679 916 h_stack;
#X text 495 950 Stack is a "last in first out" (LIFO) data structure:
the element at the top of a stack is the one that was most recently
added (push). Top outputs the elements from the top without removing
it \, pop outputs and removes it.;
#X restore 518 90 pd Container_Explanation;
#N canvas 254 0 927 786 Fileformats 0;
#X obj 38 27 cnv 15 404 54 empty empty empty 22 25 0 18 -1 -66577 0
;
#X obj 40 29 cnv 15 400 50 empty empty PDContainer 22 25 0 18 -228992
-66577 0;
#X text 259 56 PDContainer;
#X text 257 38 different fileformats of;
#X text 472 116 Please use the XML fileformat if possible \, because
it's easier to edit in an external editor and the XML parser is much
more stable!;
#X text 40 582 s go;
#X text 40 569 f 2 s wow f 2;
#X text 40 599 f 23;
#X text 38 634 (f=float \, s=symbol);
#X text 37 171 a) single elements: are the containers h_vector \, h_list
\, h_deque \, h_set \, h_multiset;
#X text 471 172 b) key-value pairs: are the containers h_map and h_multimap
;
#X text 469 276 2.element: symbol go;
#X text 476 698 f 2 s wow - f 2;
#X text 476 712 s go - s not f 34;
#X text 476 729 f 23 - s op;
#X text 488 244 key: list 2 wow;
#X text 470 229 1.element:;
#X text 488 258 value: float 2;
#X text 490 291 key: symbol go;
#X text 490 305 value: list symbol not float 34;
#X text 39 243 1.element: list 2 wow 2;
#X text 39 257 2.element: symbol go;
#X text 38 272 3.element: float 23;
#X text 37 223 a) example1:;
#X text 470 212 b) example2:;
#X text 37 312 a) example1 \, XML:;
#X text 37 339 ;
#X text 37 353 ;
#X text 54 366 ;
#X text 70 379 2 ;
#X text 70 405 2 ;
#X text 56 418 ;
#X text 70 391 wow ;
#X text 56 431 ;
#X text 57 455 ;
#X text 72 443 go ;
#X text 56 468 ;
#X text 57 492 ;
#X text 72 480 23 ;
#X text 41 506 ;
#X text 41 542 a) example1 \, textfile:;
#X text 39 115 You can save the data of the containers to XML files
and normal textfiles (see General_Concept).;
#X text 469 375 ;
#X text 469 389 ;
#X text 486 402 ;
#X text 519 430 2 ;
#X text 520 482 2 ;
#X text 488 506 ;
#X text 519 442 wow ;
#X text 475 634 ;
#X text 469 348 b) example2 \, XML:;
#X text 503 415 ;
#X text 504 456 ;
#X text 503 468 ;
#X text 504 494 ;
#X text 487 519 ;
#X text 489 621 ;
#X text 504 532 ;
#X text 505 559 ;
#X text 504 571 ;
#X text 505 609 ;
#X text 520 545 go ;
#X text 521 584 not ;
#X text 521 597 34 ;
#X text 476 668 b) example2 \, textfile:;
#X restore 550 116 pd Fileformats;
#N canvas 174 18 646 317 read_save_possibilities 0;
#X obj 50 258 outlet;
#X msg 50 158 save data.dat;
#X msg 50 194 read data.dat;
#X text 155 158 <- save all the data of the current namespace as textfile
;
#X text 149 194 <- read this textfile to the current namespace and
insert it at the back (so the size will increase);
#X text 173 83 <- read this XML-file to the current namespace and insert
it at the back (so the size will increase);
#X text 176 50 <- save all the data of the current namespace as XML-file
;
#X msg 51 50 saveXML data.xml;
#X msg 51 82 readXML data.xml;
#X connect 1 0 0 0;
#X connect 2 0 0 0;
#X connect 7 0 0 0;
#X connect 8 0 0 0;
#X restore 479 553 pd read_save_possibilities;
#X text 517 574 different possiblities to read;
#X text 517 588 and write from and to files;
#X text 516 602 (XML and textfiles);
#X text 241 815 htttp://grh.mur.at/software/pdcontainer.html;
#X text 201 799 =%)!(%= PDContainer \, by Georg Holzmann
\, 2004;
#X text 540 392 at the first outlet;
#X msg 479 378 keys;
#X text 519 378 <- dumps out all keys sequentially;
#X text 554 428 at the first outlet;
#X msg 479 414 values;
#X text 533 414 <- dumps out all values sequentially;
#X connect 0 0 51 0;
#X connect 5 0 53 0;
#X connect 6 0 53 0;
#X connect 7 0 53 0;
#X connect 8 0 53 0;
#X connect 9 0 53 0;
#X connect 13 0 53 0;
#X connect 23 0 51 0;
#X connect 24 0 51 0;
#X connect 25 0 51 0;
#X connect 26 0 25 0;
#X connect 27 0 25 0;
#X connect 28 0 51 1;
#X connect 29 0 51 1;
#X connect 30 0 51 1;
#X connect 31 0 51 1;
#X connect 32 0 51 1;
#X connect 36 0 39 0;
#X connect 37 0 39 0;
#X connect 39 0 52 0;
#X connect 40 0 52 0;
#X connect 41 0 52 0;
#X connect 42 0 52 0;
#X connect 43 0 45 0;
#X connect 44 0 45 0;
#X connect 45 0 52 0;
#X connect 46 0 52 0;
#X connect 47 0 52 0;
#X connect 48 0 52 0;
#X connect 51 0 11 0;
#X connect 52 0 35 0;
#X connect 52 1 54 0;
#X connect 53 0 10 0;
#X connect 53 2 60 0;
#X connect 57 0 53 0;
#X connect 66 0 53 0;
#X connect 73 0 53 0;
#X connect 76 0 53 0;