///////////////////////////////////////////////////////////////////////////// // // GEM - Graphics Environment for Multimedia // // pix_recNN // // Implementation file // // Copyright (c) 2005 Georg Holzmann // (and of course lot's of other developers for PD and GEM) // // For information on usage and redistribution, and for a DISCLAIMER OF ALL // WARRANTIES, see the file, "GEM.LICENSE.TERMS" in this distribution. // ///////////////////////////////////////////////////////////////////////////// #include "pix_recNN.h" CPPEXTERN_NEW_WITH_THREE_ARGS(pix_recNN, t_floatarg, A_DEFFLOAT, t_floatarg, A_DEFFLOAT, t_floatarg, A_DEFFLOAT) //---------------------------------------------------------- /* Constructor */ pix_recNN::pix_recNN(t_floatarg arg0=64, t_floatarg arg1=1, t_floatarg arg2=1) : m_data_(NULL), m_xsize_(0), m_ysize_(0), m_csize_(0), train_on_(false), net_(NULL), temp_pix_(NULL) { // init args ????????????????????????????????? neuron_nr_=2048; //static_cast((arg0<0)?2:arg0); memory_=0; precision_=2; //static_cast((arg2<1)?1:arg2); //post("arg0: %d, arg1: %d",arg0,arg1); // generate the in- and outlet: out0_ = outlet_new(this->x_obj, &s_signal); inlet_new(this->x_obj, &this->x_obj->ob_pd, &s_signal, &s_signal); // set random seed: srand( (unsigned)time(NULL) ); // build the net buildNewNet(); } //---------------------------------------------------------- /* Destructor */ pix_recNN::~pix_recNN() { outlet_free(out0_); m_data_ = NULL; m_xsize_ = 0; m_ysize_ = 0; // delete net delete net_; // delete temp_pix_ for(int i=0; i(3,3,neuron_nr_,memory_, 0,TANH,LINEAR); if(!net_) { post("pix_recNN~: no memory for neural nets!"); net_=NULL; return; } // create the temp_pix temp_pix_ = new float*[neuron_nr_]; if(!temp_pix_) { post("pix_recNN~: no memory for temp_pix_!"); temp_pix_=NULL; return; } for(int i=0; icreate(); net_->initRand(-1,1); net_->setRange(255); net_->setLearningRate(0.01); } catch(NNExcept &exc) { post("pix_recNN: %s", exc.what().c_str()); } } //---------------------------------------------------------- /* processImage */ void pix_recNN::processImage(imageStruct &image) { m_data_ = image.data; m_xsize_ = image.xsize; m_ysize_ = image.ysize; m_csize_ = image.csize; m_format_ = image.format; } //---------------------------------------------------------- /* DSP perform */ t_int* pix_recNN::perform(t_int* w) { pix_recNN *x = GetMyClass((void*)w[1]); t_float* in_signal = (t_float*)(w[2]); t_float* out_signal = (t_float*)(w[3]); int blocksize = (t_int)(w[4]); if(blocksize != x->neuron_nr_) { post("pix_recNN~: neurons and buffersize are different! You MUST have the same neuron nr as the buffersize !!!"); post("neurons: %d, buffersize: %d", x->neuron_nr_, blocksize); return (w+5); } // some needed data long int pix_size = x->m_xsize_ * x->m_ysize_; int pix_blocksize = (blocksizem_xsize_ / nr; // x size of a slice in pixels float y_slice = x->m_ysize_ / nr; // x size of a slice in pixels int x_slice_int = static_cast( x_slice ); int y_slice_int = static_cast( y_slice ); // the number of slices on one axis (is the float nr // from above rounded up) int slice_nr = static_cast(nr) + 1; if (x->m_data_) { switch(x->m_format_) { case GL_RGBA: { for(int n=0; n( (n % slice_nr) * x_slice ); int lu_pix_y = static_cast( static_cast(n / slice_nr) * y_slice ); //post("lu_pix: %d, %d", lu_pix_x, lu_pix_y); // now sum up all the pixels of one slice and then divide through the // number of pixels // the storage to sum the pixels: unsigned long int temp_data[3] = { 0, 0, 0 }; // only for optimization: int helper1 = x->m_xsize_ * x->m_csize_; int add_count = 0; for(int i=0; iprecision_) { for(int j=0; jprecision_) { // the way to access the pixels: (C=chRed, chBlue, ...) //data[Y * xsize * csize + X * csize + C] //post("current pixel: %d %d", // ((lu_pix_x+i)%x->m_xsize), ((lu_pix_y+j)%x->m_ysize) ); temp_data[0] += x->m_data_[ (lu_pix_y+j) * helper1 + (lu_pix_x+i) * x->m_csize_ + chRed ]; temp_data[1] += x->m_data_[ ((lu_pix_y+j)) * helper1 + ((lu_pix_x+i)) * x->m_csize_ + chGreen ]; temp_data[2] += x->m_data_[ ((lu_pix_y+j)%x->m_ysize_) * helper1 + ((lu_pix_x+i)%x->m_xsize_) * x->m_csize_ + chBlue ]; add_count++; } } x->temp_pix_[n][0] = temp_data[0] / add_count; x->temp_pix_[n][1] = temp_data[1] / add_count; x->temp_pix_[n][2] = temp_data[2] / add_count; } // learning, or calculation: if(!x->train_on_) x->net_->calculate(x->temp_pix_, out_signal); else x->net_->trainBTT(x->temp_pix_, out_signal, in_signal); } break; default: post("RGB only for now"); } } else { pix_blocksize=blocksize; while (pix_blocksize--) *out_signal++=0; } x->train_on_=false; return (w+5); } //---------------------------------------------------------- /* DSP-Message */ void pix_recNN::dspMess(void *data, t_signal** sp) { dsp_add(perform, 4, data, sp[0]->s_vec, sp[1]->s_vec, sp[0]->s_n); } //---------------------------------------------------------- /* saves the contents of the current net to file */ void pix_recNN::saveNet(string filename) { try { net_->save(filename); post("pix_recNN~: saved to output-file %s", filename.c_str()); } catch(NNExcept &exc) { post("pix_recNN: %s", exc.what().c_str()); } } //---------------------------------------------------------- /* loads the parameters of the net from file */ void pix_recNN::loadNet(string filename) { try { net_->load(filename); post("pix_recNN~: loaded file %s", filename.c_str()); } catch(NNExcept &exc) { post("pix_recNN: %s", exc.what().c_str()); } } //---------------------------------------------------------- /* setup callback */ void pix_recNN::obj_setupCallback(t_class *classPtr) { class_addcreator((t_newmethod)_classpix_recNN, gensym("pix_recNN~"), A_NULL); class_addmethod(classPtr, (t_method)pix_recNN::setNeurons, gensym("neurons"), A_FLOAT, A_NULL); class_addmethod(classPtr, (t_method)pix_recNN::getNeurons, gensym("getneurons"), A_NULL); class_addmethod(classPtr, (t_method)pix_recNN::setMemory, gensym("memory"), A_FLOAT, A_NULL); class_addmethod(classPtr, (t_method)pix_recNN::getMemory, gensym("getmemory"), A_NULL); class_addmethod(classPtr, (t_method)pix_recNN::setPrecision, gensym("precision"), A_FLOAT, A_NULL); class_addmethod(classPtr, (t_method)pix_recNN::getPrecision, gensym("getprecision"), A_NULL); class_addmethod(classPtr, (t_method)pix_recNN::setTrainOn, gensym("train"), A_NULL); class_addmethod(classPtr, (t_method)pix_recNN::setLearnrate, gensym("learnrate"), A_FLOAT, A_NULL); class_addmethod(classPtr, (t_method)pix_recNN::getLearnrate, gensym("getlearnrate"), A_NULL); class_addmethod(classPtr, (t_method)pix_recNN::saveToFile, gensym("save"), A_SYMBOL, A_NULL); class_addmethod(classPtr, (t_method)pix_recNN::loadFromFile, gensym("load"), A_SYMBOL, A_NULL); class_addmethod(classPtr, (t_method)pix_recNN::dspMessCallback, gensym("dsp"), A_NULL); class_addmethod(classPtr, nullfn, gensym("signal"), A_NULL); } //---------------------------------------------------------- /* DSP callback */ void pix_recNN::dspMessCallback(void *data, t_signal** sp) { GetMyClass(data)->dspMess(data, sp); } //---------------------------------------------------------- /* sets the precision */ void pix_recNN::setPrecision(void *data, t_floatarg precision) { GetMyClass(data)->precision_ = (precision<1) ? 1 : static_cast(precision); } void pix_recNN::getPrecision(void *data) { post("pix_recNN~: precision: %d",GetMyClass(data)->precision_); } //---------------------------------------------------------- /* method to train the network */ void pix_recNN::setTrainOn(void *data) { GetMyClass(data)->train_on_ = true; } //---------------------------------------------------------- /* changes the number of neurons * (which should be the same as the audio buffer) * ATTENTION: a new net will be initialized */ void pix_recNN::setNeurons(void *data, t_floatarg neurons) { GetMyClass(data)->neuron_nr_ = (neurons<1) ? 1 : static_cast(neurons); GetMyClass(data)->buildNewNet(); } void pix_recNN::getNeurons(void *data) { post("pix_recNN~: nr of neurons: %d (MUST be the same as buffersize!)", GetMyClass(data)->neuron_nr_); } //---------------------------------------------------------- /* changes the nblock size * ATTENTION: a new net will be initialized */ void pix_recNN::setMemory(void *data, t_floatarg memory) { GetMyClass(data)->memory_ = (memory<0) ? 0 : static_cast(memory); GetMyClass(data)->buildNewNet(); } void pix_recNN::getMemory(void *data) { post("pix_recNN~: memory: %d", GetMyClass(data)->memory_); } //---------------------------------------------------------- /* sets the learnrate of the net */ void pix_recNN::setLearnrate(void *data, t_floatarg learn_rate) { GetMyClass(data)->net_->setLearningRate(learn_rate); } void pix_recNN::getLearnrate(void *data) { post("pix_recNN~: learning rate: %f",GetMyClass(data)->net_->getLearningRate()); } //---------------------------------------------------------- /* FileIO-stuff */ void pix_recNN::saveToFile(void *data, t_symbol *filename) { GetMyClass(data)->saveNet(filename->s_name); } void pix_recNN::loadFromFile(void *data, t_symbol *filename) { GetMyClass(data)->loadNet(filename->s_name); }