diff options
author | N.N. <krzyszcz@users.sourceforge.net> | 2004-12-08 15:45:27 +0000 |
---|---|---|
committer | N.N. <krzyszcz@users.sourceforge.net> | 2004-12-08 15:45:27 +0000 |
commit | 155fa2c04c7e415803e1546dcde0a47442eef4b3 (patch) | |
tree | 94a1714fee23703bddef850e7b5acb60a9c39631 /shared/common/clc.c | |
parent | d5a39ff6469f8762218c00a34f4b0a120a56332b (diff) |
*** empty log message ***
svn path=/trunk/externals/miXed/; revision=2361
Diffstat (limited to 'shared/common/clc.c')
-rw-r--r-- | shared/common/clc.c | 84 |
1 files changed, 84 insertions, 0 deletions
diff --git a/shared/common/clc.c b/shared/common/clc.c new file mode 100644 index 0000000..b4d1208 --- /dev/null +++ b/shared/common/clc.c @@ -0,0 +1,84 @@ +/* Copyright (c) 2004 krzYszcz and others. + * For information on usage and redistribution, and for a DISCLAIMER OF ALL + * WARRANTIES, see the file, "LICENSE.txt," in this distribution. */ + +#include <math.h> + +/* Problem: find a function f : p -> q (where p is user's curve control + parameter, q is log factor) such that the curves will bend in + a semi-linear way over the p's range of 0..1. The curve function is + then g(x, p) = (exp(f(p) * x) - 1) / (exp(f(p)) - 1), where x is + curve's domain. If, for example, the points g(0.5, p) are to make + a semi-linear pattern, then the solution is a function f that minimizes + the integral of the error function e(p) = sqr(((1-p)/2)-g(.5, p)) + over 0..1. Until someone does this analytically, we are left with + a lame formula, which has been tweaked and tested in gnuplot: + f(p) = h(p) / (1 - h(p)), where h(p) = (((p + 1e-20) * 1.2) ** .41) * .91. + The file curve.gp, in the sickle's source directory, may come handy, + in case there is anyone, who fancy tweaking it even further. + + To implement this, start from these equations: + nhops = npoints - 1 + bb * mm ^ nhops = bb + 1 + (bb ^ 2) * (mm ^ nhops) = ((exp(ff/2) - 1) / (exp(ff) - 1)) ^ 2 + + and calculate: + hh = pow(((p + c1) * c2), c3) * c4 + ff = hh / (1 - hh) + eff = exp(ff) - 1 + gh = (exp(ff * .5) - 1) / eff + bb = gh * (gh / (1 - (gh + gh))) + mm = ((exp(ff * (1/nhops)) - 1) / (eff * bb)) + 1 + + The loop is: + for (vv = bb, i = 0; i <= nhops; vv *= mm, i++) + result = (vv - bb) * (y1 - y0) + y0 + where y0, y1 are start and destination values + + This formula generates curves with < .000004% deviation from the straight + line for p = 0 at half-domain, range 1. There are no nans for -1 <= p <= 1. +*/ + +#define CLCCURVE_C1 1e-20 +#define CLCCURVE_C2 1.2 +#define CLCCURVE_C3 0.41 +#define CLCCURVE_C4 0.91 + +void clccurve_coefs(int nhops, double crv, double *bbp, double *mmp) +{ + if (nhops > 0) + { + double hh, ff, eff, gh; + if (crv < 0) + { + if (crv < -1.) + crv = -1.; + hh = pow(((CLCCURVE_C1 - crv) * CLCCURVE_C2), CLCCURVE_C3) + * CLCCURVE_C4; + ff = hh / (1. - hh); + eff = exp(ff) - 1.; + gh = (exp(ff * .5) - 1.) / eff; + *bbp = gh * (gh / (1. - (gh + gh))); + *mmp = 1. / (((exp(ff * (1. / (double)nhops)) - 1.) / + (eff * *bbp)) + 1.); + *bbp += 1.; + } + else + { + if (crv > 1.) + crv = 1.; + hh = pow(((crv + CLCCURVE_C1) * CLCCURVE_C2), CLCCURVE_C3) + * CLCCURVE_C4; + ff = hh / (1. - hh); + eff = exp(ff) - 1.; + gh = (exp(ff * .5) - 1.) / eff; + *bbp = gh * (gh / (1. - (gh + gh))); + *mmp = ((exp(ff * (1. / (double)nhops)) - 1.) / + (eff * *bbp)) + 1.; + } + } + else if (crv < 0) + *bbp = 2., *mmp = 1.; + else + *bbp = *mmp = 1.; +} |