/* Copyright (c) 2003 krzYszcz and others. * For information on usage and redistribution, and for a DISCLAIMER OF ALL * WARRANTIES, see the file, "LICENSE.txt," in this distribution. */ #include #include "m_pd.h" #include "shared.h" #include "common/grow.h" #include "common/loud.h" #include "sickle/sic.h" //#define CURVE_DEBUG /* CHECKED apparently c74's formula was not very carefully tuned. It has 5% deviation from the straight line for ccinput=0 (ccinput is user's curve control parameter, <0..1>) at half-domain, range=1. It generates nans for ccinput > .995. The formula below generates curves with < .000004% deviation and no nans. Problem: find a function f : ccinput -> cc, such that the curves will bend in a semi-linear way over the ccinput's range of 0..1. The curve function is then g(x, p) = (exp(f(p) * x) - 1) / (exp(f(p)) - 1), where x is curve's domain, and p is ccinput. If, for example, the points g(0.5, p) are to make a semi-linear pattern, then the solution is a function f that minimizes the integral of the error function e(p) = sqr(((1-p)/2)-g(.5, p)) over 0..1. Until someone does this analytically, we are left with a lame formula, which has been tweaked and tested in gnuplot: f(p) = h(p) / (1 - h(p)), where h(p) = (((p + 1e-20) * 1.2) ** .41) * .91. The file curve.gp, in the sickle's source directory, may come handy, in case there is anyone, who fancy tweaking it even further. To implement this, start from these equations: bb * mm ^ npoints = bb + 1 (bb ^ 2) * (mm ^ npoints) = ((exp(ff/2) - 1) / (exp(ff) - 1)) ^ 2 and calculate: hh = pow(((ccinput + c1) * c2), c3) * c4 ff = hh / (1 - hh) eff = exp(ff) - 1 gh = (exp(ff * .5) - 1) / eff bb = gh * (gh / (1 - (gh + gh))) mm = ((exp(ff * (1/npoints)) - 1) / (eff * bb)) + 1 The loop is: for (vv = bb, i = 0; i < n; vv *= mm, i++) result = (vv - bb) * (y1 - y0) + y0 where y0, y1 are start and destination values */ #define CURVE_C1 1e-20 #define CURVE_C2 1.2 #define CURVE_C3 0.41 #define CURVE_C4 0.91 #define CURVE_MINCCINPUT -1. #define CURVE_MAXCCINPUT 1. #define CURVE_INISIZE 64 /* LATER rethink */ #define CURVE_MAXSIZE 64 typedef struct _curveseg { float s_target; float s_delta; int s_npoints; float s_ccinput; double s_bb; double s_mm; } t_curveseg; typedef struct _curve { t_sic x_sic; float x_value; float x_ccinput; float x_target; float x_delta; int x_deltaset; double x_vv; double x_bb; double x_mm; float x_y0; float x_dy; float x_ksr; int x_nleft; int x_retarget; int x_size; /* as allocated */ int x_nsegs; /* as used */ t_curveseg *x_curseg; t_curveseg *x_segs; t_curveseg x_segini[CURVE_INISIZE]; t_clock *x_clock; t_outlet *x_bangout; #ifdef CURVE_DEBUG int dbg_nretargets; int dbg_exitpoint; int dbg_npoints; #endif } t_curve; static t_class *curve_class; static double curve_coef; static void curve_cc(t_curve *x, t_curveseg *segp, float f) { int npoints = segp->s_delta * x->x_ksr + 0.5; /* LATER rethink */ segp->s_ccinput = f; if (npoints > 0) { double hh, ff, eff, gh; segp->s_npoints = npoints; if (f < 0) { if (f < CURVE_MINCCINPUT) f = CURVE_MINCCINPUT; hh = pow(((CURVE_C1 - f) * CURVE_C2), CURVE_C3) * CURVE_C4; ff = hh / (1. - hh); eff = exp(ff) - 1.; gh = (exp(ff * .5) - 1.) / eff; segp->s_bb = gh * (gh / (1. - (gh + gh))); segp->s_mm = 1. / (((exp(ff * (1. / (double)npoints)) - 1.) / (eff * segp->s_bb)) + 1.); } else { if (f > CURVE_MAXCCINPUT) f = CURVE_MAXCCINPUT; hh = pow(((f + CURVE_C1) * CURVE_C2), CURVE_C3) * CURVE_C4; ff = hh / (1. - hh); eff = exp(ff) - 1.; gh = (exp(ff * .5) - 1.) / eff; segp->s_bb = gh * (gh / (1. - (gh + gh))); segp->s_mm = ((exp(ff * (1. / (double)npoints)) - 1.) / (eff * segp->s_bb)) + 1.; } } else { segp->s_npoints = 0; segp->s_bb = segp->s_mm = 1.; } #ifdef CURVE_DEBUG post("%g %g %g %g", segp->s_target, segp->s_delta, segp->s_bb, segp->s_mm); #endif } static void curve_tick(t_curve *x) { outlet_bang(x->x_bangout); #ifdef CURVE_DEBUG post("exit point %d, after %d retarget calls", x->dbg_exitpoint, x->dbg_nretargets); post("at value %g, after last %d npoints, with bb %g, mm %g", x->x_value, x->dbg_npoints, x->x_bb, x->x_mm); x->dbg_nretargets = x->dbg_exitpoint = x->dbg_npoints = 0; #endif } static t_int *curve_perform(t_int *w) { t_curve *x = (t_curve *)(w[1]); t_float *out = (t_float *)(w[2]); int nblock = (int)(w[3]); int nxfer = x->x_nleft; float curval = x->x_value; double vv = x->x_vv; double bb = x->x_bb; double mm = x->x_mm; float dy = x->x_dy; float y0 = x->x_y0; if (PD_BADFLOAT(curval)) /* LATER rethink */ curval = x->x_value = 0; retarget: if (x->x_retarget) { float target = x->x_curseg->s_target; float delta = x->x_curseg->s_delta; int npoints = x->x_curseg->s_npoints; mm = x->x_curseg->s_mm; if (x->x_curseg->s_ccinput < 0) { bb = x->x_curseg->s_bb + 1.; dy = x->x_value - target; } else { bb = x->x_curseg->s_bb; dy = target - x->x_value; } #ifdef CURVE_DEBUG x->dbg_nretargets++; #endif x->x_nsegs--; x->x_curseg++; while (npoints <= 0) { curval = x->x_value = target; if (x->x_nsegs) { target = x->x_curseg->s_target; delta = x->x_curseg->s_delta; npoints = x->x_curseg->s_npoints; mm = x->x_curseg->s_mm; if (x->x_curseg->s_ccinput < 0) { bb = x->x_curseg->s_bb + 1.; dy = x->x_value - target; } else { bb = x->x_curseg->s_bb; dy = target - x->x_value; } x->x_nsegs--; x->x_curseg++; } else { while (nblock--) *out++ = curval; x->x_nleft = 0; #ifdef CURVE_DEBUG x->dbg_exitpoint = 1; #endif clock_delay(x->x_clock, 0); x->x_retarget = 0; return (w + 4); } } nxfer = x->x_nleft = npoints; x->x_vv = vv = bb; x->x_bb = bb; x->x_mm = mm; x->x_dy = dy; x->x_y0 = y0 = x->x_value; x->x_target = target; x->x_retarget = 0; #ifdef CURVE_DEBUG x->dbg_npoints = npoints; #endif } if (nxfer >= nblock) { int silly = ((x->x_nleft -= nblock) == 0); /* LATER rethink */ while (nblock--) { *out++ = curval = (vv - bb) * dy + y0; vv *= mm; } if (silly) { if (x->x_nsegs) x->x_retarget = 1; else { #ifdef CURVE_DEBUG x->dbg_exitpoint = 2; #endif clock_delay(x->x_clock, 0); } x->x_value = x->x_target; } else { x->x_value = curval; x->x_vv = vv; } } else if (nxfer > 0) { nblock -= nxfer; do *out++ = (vv - bb) * dy + y0, vv *= mm; while (--nxfer); curval = x->x_value = x->x_target; if (x->x_nsegs) { x->x_retarget = 1; goto retarget; } else { while (nblock--) *out++ = curval; x->x_nleft = 0; #ifdef CURVE_DEBUG x->dbg_exitpoint = 3; #endif clock_delay(x->x_clock, 0); } } else while (nblock--) *out++ = curval; return (w + 4); } static void curve_float(t_curve *x, t_float f) { if (x->x_deltaset) { x->x_deltaset = 0; x->x_target = f; x->x_nsegs = 1; x->x_curseg = x->x_segs; x->x_curseg->s_target = f; x->x_curseg->s_delta = x->x_delta; #ifdef CURVE_DEBUG startpost("single segment: "); #endif curve_cc(x, x->x_curseg, x->x_ccinput); x->x_retarget = 1; } else { x->x_value = x->x_target = f; x->x_nsegs = 0; x->x_curseg = 0; x->x_nleft = 0; x->x_retarget = 0; } } /* CHECKED delta is not persistent, but ccinput is */ static void curve_ft1(t_curve *x, t_floatarg f) { x->x_delta = f; x->x_deltaset = (f > 0); } static void curve_list(t_curve *x, t_symbol *s, int ac, t_atom *av) { int natoms, nsegs, odd; t_atom *ap; t_curveseg *segp; for (natoms = 0, ap = av; natoms < ac; natoms++, ap++) { if (ap->a_type != A_FLOAT) { loud_messarg((t_pd *)x, &s_list); /* CHECKED */ return; /* CHECKED */ } } if (!natoms) return; /* CHECKED */ odd = natoms % 3; nsegs = natoms / 3; if (odd) nsegs++; if (nsegs > x->x_size) { int ns = nsegs; x->x_segs = grow_nodata(&ns, &x->x_size, x->x_segs, CURVE_INISIZE, x->x_segini, sizeof(*x->x_segs)); if (ns < nsegs) { natoms = ns * 3; nsegs = ns; odd = 0; } } x->x_nsegs = nsegs; #ifdef CURVE_DEBUG post("%d segments:", x->x_nsegs); #endif segp = x->x_segs; if (odd) nsegs--; while (nsegs--) { segp->s_target = av++->a_w.w_float; segp->s_delta = av++->a_w.w_float; curve_cc(x, segp, av++->a_w.w_float); segp++; } if (odd) { segp->s_target = av->a_w.w_float; if (odd > 1) segp->s_delta = av[1].a_w.w_float; else segp->s_delta = 0; curve_cc(x, segp, 0.); } x->x_deltaset = 0; x->x_target = x->x_segs->s_target; x->x_curseg = x->x_segs; x->x_retarget = 1; } /* CHECKED no stop, pity... */ #if 0 static void curve_stop(t_curve *x) { x->x_target = x->x_value; x->x_nleft = 0; x->x_retarget = 0; x->x_nsegs = 0; x->x_curseg = 0; } #endif static void curve_dsp(t_curve *x, t_signal **sp) { float ksr = sp[0]->s_sr * 0.001; if (ksr != x->x_ksr) { int nsegs = x->x_nsegs; t_curveseg *segp = x->x_segs; x->x_ksr = ksr; while (nsegs--) { curve_cc(x, segp, segp->s_ccinput); segp++; } } dsp_add(curve_perform, 3, x, sp[0]->s_vec, sp[0]->s_n); } static void curve_free(t_curve *x) { if (x->x_segs != x->x_segini) freebytes(x->x_segs, x->x_size * sizeof(*x->x_segs)); if (x->x_clock) clock_free(x->x_clock); } static void *curve_new(t_floatarg f1, t_floatarg f2) { static int initialized = 0; t_curve *x = (t_curve *)pd_new(curve_class); if (!initialized) { curve_coef = CURVE_C2 / exp(CURVE_C3); initialized = 1; } x->x_value = x->x_target = f1; x->x_ccinput = f2; x->x_deltaset = 0; x->x_ksr = sys_getsr() * 0.001; x->x_nleft = 0; x->x_retarget = 0; x->x_size = CURVE_INISIZE; x->x_nsegs = 0; x->x_segs = x->x_segini; x->x_curseg = 0; inlet_new((t_object *)x, (t_pd *)x, &s_float, gensym("ft1")); floatinlet_new((t_object *)x, &x->x_ccinput); outlet_new((t_object *)x, &s_signal); x->x_bangout = outlet_new((t_object *)x, &s_bang); x->x_clock = clock_new(x, (t_method)curve_tick); return (x); } void curve_tilde_setup(void) { curve_class = class_new(gensym("curve~"), (t_newmethod)curve_new, (t_method)curve_free, sizeof(t_curve), 0, A_DEFFLOAT, A_DEFFLOAT, 0); sic_setup(curve_class, curve_dsp, SIC_NOMAINSIGNALIN); class_addfloat(curve_class, curve_float); class_addlist(curve_class, curve_list); class_addmethod(curve_class, (t_method)curve_ft1, gensym("ft1"), A_FLOAT, 0); }