diff options
Diffstat (limited to 'sqosc~')
-rwxr-xr-x | sqosc~/sqosc~.c | 147 |
1 files changed, 36 insertions, 111 deletions
diff --git a/sqosc~/sqosc~.c b/sqosc~/sqosc~.c index f832633..e6917f9 100755 --- a/sqosc~/sqosc~.c +++ b/sqosc~/sqosc~.c @@ -1,32 +1,33 @@ /* sqosc.c Martin Peach 20060613 based on d_osc.c */ /* 20060707 using x-x^3/3 to smooth the ramp */ +/* 20070328 added call to finite() to eliminate possible NaNs */ +/* d_osc.c is: */ /* Copyright (c) 1997-1999 Miller Puckette. * For information on usage and redistribution, and for a DISCLAIMER OF ALL * WARRANTIES, see the file, "LICENSE.txt," in this distribution. */ - -/* sinusoidal oscillator and table lookup; see also tabosc4~ in d_array.c. -*/ +/* sinusoidal oscillator and table lookup; see also tabosc4~ in d_array.c. */ #include "m_pd.h" -#include "math.h" -#include <stdio.h> /* for file io */ +#include <math.h> #define UNITBIT32 1572864. /* 3*2^19; bit 32 has place value 1 */ - /* machine-dependent definitions. These ifdefs really - should have been by CPU type and not by operating system! */ +/* machine-dependent definitions. These ifdefs really +* should have been by CPU type and not by operating system! */ #ifdef IRIX - /* big-endian. Most significant byte is at low address in memory */ +/* big-endian. Most significant byte is at low address in memory */ #define HIOFFSET 0 /* word offset to find MSB */ #define LOWOFFSET 1 /* word offset to find LSB */ #define int32 long /* a data type that has 32 bits */ #endif /* IRIX */ #ifdef MSW - /* little-endian; most significant byte is at highest address */ +/* little-endian; most significant byte is at highest address */ #define HIOFFSET 1 #define LOWOFFSET 0 #define int32 long +#include <float.h> /* for _finite */ +#define finite _finite #endif #if defined(__FreeBSD__) || defined(__APPLE__) @@ -83,8 +84,6 @@ typedef struct _sqosc float x_slew; /* slew time in samples */ double x_dpw; /* pulse width in this pulse */ int x_pulse_ended; /* nonzero if pulse has finished */ -// FILE *x_logfp; -// int x_logcount; } t_sqosc; static void sqosc_maketable(void); @@ -100,18 +99,14 @@ static void sqosc_maketable(void) int i; float *fp, phase, phsinc = (2. * 3.14159) / SQOSCTABSIZE; union tabfudge tf; - //FILE *cosfp; if (sqosc_table) return; - //cosfp = fopen("sqosctable.txt", "wb"); sqosc_table = (float *)getbytes(sizeof(float) * (SQOSCTABSIZE+1)); for (i = SQOSCTABSIZE + 1, fp = sqosc_table, phase = 0; i--; fp++, phase += phsinc) { *fp = cos(phase); - //fprintf(cosfp, "%f: %f\n", phase, *fp); } - //fclose(cosfp); /* here we check at startup whether the byte alignment is as we declared it. If not, the code has to be recompiled the other way. */ @@ -146,8 +141,6 @@ static void *sqosc_new(t_floatarg f, t_floatarg pw, t_floatarg bw) x->x_slew = HALFSQOSCTABSIZE/x->x_bw;/* slew = time of half bandwidth cycle */ x->x_dpw = x->x_pw; /* pulse width in this pulse */ x->x_pulse_ended = 1; /* nonzero if pulse has finished */ -// x->x_logfp = fopen("sqosclog.txt", "wb"); -// x->x_logcount = 0; return (x); } @@ -242,17 +235,17 @@ static t_int *sqosc_perform(t_int *w) tf.tf_d = dphase; /* the current phase plus the "frame" */ lastin = *in++; /* latest frequency */ if (lastin < 0) lastin = -lastin;/* negative frequency is the same as positive here */ - if (lastin > x->x_bw) lastin = x->x_bw;// limit frequency to bandwidth + if (lastin > x->x_bw) lastin = x->x_bw;/* limit frequency to bandwidth */ slewindex = x->x_slew*lastin; dphase += lastin * conv; /* new phase is old phase + (frequency * table period) */ - //addr = tab + (tf.tf_i[HIOFFSET] & (SQOSCTABSIZE-1)); /* point to the current sample in the table */ + /*addr = tab + (tf.tf_i[HIOFFSET] & (SQOSCTABSIZE-1)); */ /* point to the current sample in the table */ index = tf.tf_i[HIOFFSET] & (SQOSCTABSIZE-1); tf.tf_i[HIOFFSET] = normhipart; /* zero the non-fractional part of the phase */ frac = tf.tf_d - UNITBIT32; /* extract the fractional part of the phase */ while (--n) { tf.tf_d = dphase; - //f1 = addr[0]; /* first sample */ + /*f1 = addr[0]; */ /* first sample */ if (index <= slewindex) { /* rising phase */ if(x->x_pulse_ended) @@ -262,31 +255,17 @@ static t_int *sqosc_perform(t_int *w) else x->x_dpw = x->x_pw; x->x_pulse_ended = 0; } - //findex = (index/(x->x_slew*lastin))*HALFSQOSCTABSIZE; - //addr = tab + HALFSQOSCTABSIZE + (int)findex; - f1 = 1.0-2.0*(slewindex-index)/slewindex;// a ramp from -1 to +1 // addr[0]; - f1 = f1 - pow(f1, 3.0)*onethird;// smooth the ramp -// if (x->x_logcount < 1000) -// { -// fprintf(x->x_logfp, "rise index %d slewindex %f f1 %f frac %f\n", index, slewindex, f1, frac); -// ++x->x_logcount; -// if (x->x_logcount >= 1000) fclose(x->x_logfp); -// } + /*findex = (index/(x->x_slew*lastin))*HALFSQOSCTABSIZE;*/ + /*addr = tab + HALFSQOSCTABSIZE + (int)findex; */ + f1 = 1.0-2.0*(slewindex-index)/slewindex;/* a ramp from -1 to +1 */ /* addr[0];*/ + f1 = f1 - pow(f1, 3.0)*onethird;/* smooth the ramp */ } else if (index < x->x_dpw) f1 = twothirds; /* risen */ else if (index <= slewindex+x->x_dpw) { /* falling phase */ -// findex = ((index-HALFSQOSCTABSIZE)/(x->x_slew*lastin))*HALFSQOSCTABSIZE; -// addr = tab + (int)findex; - f1 = -1.0+2.0*(slewindex-index+x->x_dpw)/slewindex;// a ramp from +1 to -1 // addr[0]; - f1 = f1 - pow(f1, 3.0)*onethird;// smooth the ramp + f1 = -1.0+2.0*(slewindex-index+x->x_dpw)/slewindex;/* a ramp from +1 to -1 */ /* addr[0];*/ + f1 = f1 - pow(f1, 3.0)*onethird;/* smooth the ramp */ x->x_pulse_ended = 1; -// if (x->x_logcount < 1000) -// { -// fprintf(x->x_logfp, "fall index %d slewindex %f f1 %f frac %f\n", index, slewindex, f1, frac); -// ++x->x_logcount; -// if (x->x_logcount >= 1000) fclose(x->x_logfp); -// } } else { /* fallen */ @@ -294,50 +273,32 @@ static t_int *sqosc_perform(t_int *w) } lastin = *in++; if (lastin < 0) lastin = -lastin;/* negative frequency is the same as positive here */ - if (lastin > x->x_bw) lastin = x->x_bw;// limit frequency to bandwidth + if (lastin > x->x_bw) lastin = x->x_bw;/* limit frequency to bandwidth */ slewindex = x->x_slew*lastin; dphase += lastin * conv; /* next phase */ - //f2 = addr[1]; /* second sample */ + /*f2 = addr[1]; */ /* second sample */ if (index+1 <= slewindex) { - f2 = 1.0-2.0*(slewindex-index-1)/slewindex;// addr[1]; + f2 = 1.0-2.0*(slewindex-index-1)/slewindex;/* addr[1]; */ f2 = f2 - pow(f2, 3.0)*onethird; -// if (x->x_logcount < 1000) -// { -// fprintf(x->x_logfp, "rise index %d slewindex %f f2 %f frac %f\n", index+1, slewindex, f2, frac); -// ++x->x_logcount; -// if (x->x_logcount >= 1000) fclose(x->x_logfp); -// } } else if (index+1 < x->x_dpw) f2 = twothirds; else if (index+1 <= slewindex+x->x_dpw) { - f2 = -1.0+2.0*(slewindex-index-1+x->x_dpw)/slewindex;// addr[1]; + f2 = -1.0+2.0*(slewindex-index-1+x->x_dpw)/slewindex;/* addr[1]; */ f2 = f2 - pow(f2, 3.0)*onethird; -// if (x->x_logcount < 1000) -// { -// fprintf(x->x_logfp, "fall index %d slewindex %f f2 %f frac %f\n", index+1, slewindex, f2, frac); -// ++x->x_logcount; -// if (x->x_logcount >= 1000) fclose(x->x_logfp); -// } } else f2 = -twothirds; sample = f1 + frac * (f2 - f1); /* output first sample plus fraction of second sample (linear interpolation) */ *out++ = sample; -// if (x->x_logcount < 1000) -// { -// fprintf(x->x_logfp, "index %ld f1 %f f2 %f frac %f out %f\n", index, f1, f2, frac, sample); -// ++x->x_logcount; -// if (x->x_logcount >= 1000) fclose(x->x_logfp); -// } - //addr = tab + (tf.tf_i[HIOFFSET] & (SQOSCTABSIZE-1)); /* point to the next sample */ + /* addr = tab + (tf.tf_i[HIOFFSET] & (SQOSCTABSIZE-1)); */ /* point to the next sample */ index = tf.tf_i[HIOFFSET] & (SQOSCTABSIZE-1); tf.tf_i[HIOFFSET] = normhipart; /* zero the non-fractional part */ frac = tf.tf_d - UNITBIT32; /* get next fractional part */ } - //f1 = addr[0]; + /* f1 = addr[0]; */ if (index <= slewindex) { if(x->x_pulse_ended) @@ -347,69 +308,40 @@ static t_int *sqosc_perform(t_int *w) else x->x_dpw = x->x_pw; x->x_pulse_ended = 0; } - //findex = (index/(x->x_slew*lastin))*HALFSQOSCTABSIZE; - //addr = tab + HALFSQOSCTABSIZE + (int)findex; - f1 = 1.0-2.0*(slewindex-index)/slewindex;// addr[0]; + /* findex = (index/(x->x_slew*lastin))*HALFSQOSCTABSIZE; */ + /* addr = tab + HALFSQOSCTABSIZE + (int)findex; */ + f1 = 1.0-2.0*(slewindex-index)/slewindex;/* addr[0]; */ f1 = f1 - pow(f1, 3.0)*onethird; -// if (x->x_logcount < 1000) -// { -// fprintf(x->x_logfp, "rise2 index %d slewindex %f f1 %f frac %f\n", index, slewindex, f1, frac); -// ++x->x_logcount; -// if (x->x_logcount >= 1000) fclose(x->x_logfp); -// } } else if (index < x->x_dpw) f1 = twothirds; /* risen */ else if (index <= slewindex+x->x_dpw) { /* falling phase */ -// findex = ((index-HALFSQOSCTABSIZE)/(x->x_slew*lastin))*HALFSQOSCTABSIZE; -// addr = tab + (int)findex; - f1 = -1.0+2.0*(slewindex-index+x->x_dpw)/slewindex;// addr[0]; +/* findex = ((index-HALFSQOSCTABSIZE)/(x->x_slew*lastin))*HALFSQOSCTABSIZE;*/ +/* addr = tab + (int)findex; */ + f1 = -1.0+2.0*(slewindex-index+x->x_dpw)/slewindex;/* addr[0]; */ f1 = f1 - pow(f1, 3.0)*onethird; x->x_pulse_ended = 1; -// if (x->x_logcount < 1000) -// { -// fprintf(x->x_logfp, "fall2 index %d slewindex %f f1 %f frac %f\n", index, slewindex, f1, frac); -// ++x->x_logcount; -/// if (x->x_logcount >= 1000) fclose(x->x_logfp); -// } } else { /* fallen */ f1 = -twothirds; } - //f2 = addr[1]; /* second sample */ + /* f2 = addr[1]; */ /* second sample */ if (index+1 <= slewindex) { - f2 = 1.0-2.0*(slewindex-index-1)/slewindex;// addr[1]; + f2 = 1.0-2.0*(slewindex-index-1)/slewindex;/* addr[1];*/ f2 = f2 - pow(f2, 3.0)*onethird; -// if (x->x_logcount < 1000) -// { -// fprintf(x->x_logfp, "rise2 index %d slewindex %f f2 %f frac %f\n", index+1, slewindex, f2, frac); -// ++x->x_logcount; -// if (x->x_logcount >= 1000) fclose(x->x_logfp); -// } } else if (index+1 < x->x_dpw) f2 = twothirds; else if (index+1 <= slewindex+x->x_dpw) { - f2 = -1.0+2.0*(slewindex-index-1+x->x_dpw)/slewindex;// addr[1]; + f2 = -1.0+2.0*(slewindex-index-1+x->x_dpw)/slewindex;/* addr[1];*/ f2 = f2 - pow(f2, 3.0)*onethird; -// if (x->x_logcount < 1000) -// { -// fprintf(x->x_logfp, "fall2 index %d slewindex %f f2 %f frac %f\n", index+1, slewindex, f2, frac); -// ++x->x_logcount; -// if (x->x_logcount >= 1000) fclose(x->x_logfp); -// } } else f2 = -twothirds; sample = f1 + frac * (f2 - f1); /* the final sample */ - *out++ = sample; -// if (x->x_logcount < 1000) -// { -// fprintf(x->x_logfp, "*index %ld f1 %f f2 %f frac %f out %f\n", index, f1, f2, frac, sample); -// ++x->x_logcount; -// if (x->x_logcount >= 1000) fclose(x->x_logfp); -// } + if (_finite(sample))*out++ = sample; + else *out++ = 0.0; tf.tf_d = UNITBIT32 * SQOSCTABSIZE; /* this just changes the exponent if the table size is a power of 2 */ normhipart = tf.tf_i[HIOFFSET]; /* ...so we get more integer digits but fewer fractional ones */ @@ -420,16 +352,10 @@ static t_int *sqosc_perform(t_int *w) } static void sqosc_dsp(t_sqosc *x, t_signal **sp) { -// static int once = 0; x->x_conv = SQOSCTABSIZE/sp[0]->s_sr; /* conv = table period = (samples/cycle)/(samples/sec) = sec/cycle = 0.011610sec for 512/44100 */ -// if (once == 0) -// { -// ++once; -// post ("x->x_slew = %f, x->x_bw = %f, sp[0]->s_sr = %f", x->x_slew, x->x_bw, sp[0]->s_sr); -// } dsp_add(sqosc_perform, 4, x, sp[0]->s_vec, sp[1]->s_vec, sp[0]->s_n); } @@ -441,7 +367,6 @@ static void sqosc_ft1(t_sqosc *x, t_float f) static void sqosc_pw(t_sqosc *x, t_float pw) { if ((pw <= 0)||(pw >= 1)) return; - //post("sqosc: pulse width must be greater than 0 and less than 1");// this is an annoying message... x->x_pw = pw * SQOSCTABSIZE; } |