1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
|
/* Martin Peach 20060827 start porting this to pd */
/* 20060828 move the used functions from ruidolib.c to this file */
/*
* ruido.c
* Copyright (C) 2004 josŽ manuel berenguer
* generador de nœmeros aleatorios para max/msp
* Este programa es Software Libre; usted puede redistribuirlo
* y/o modificarlo bajo los tŽrminos de la "GNU General Public
* License" como lo publica la "FSF Free Software Foundation",
* o (a su elecci—n) de cualquier versi—n posterior.
* Este programa es distribuido con la esperanza de que le ser‡
* œtil, pero SIN NINGUNA GARANTIA; incluso sin la garant’a
* impl’cita por el MERCADEO o EJERCICIO DE ALGUN PROPOSITO en
* particular. Vea la "GNU General Public License" para m‡s
* detalles.
* Usted debe haber recibido una copia de la "GNU General Public
* License" junto con este programa, si no, escriba a la "FSF
* Free Software Foundation, Inc.", 59 Temple Place - Suite 330,
* Boston, MA 02111-1307, USA.
*/
#include "m_pd.h"
void *rojo_class;
typedef struct _rojo
{
t_object x_obj;
t_float x_scale;
t_float x_alpha;
double x_u[97];
double x_c;
double x_cd;
double x_cm;
int x_i97;
int x_j97;
int x_test;
} t_rojo;
static t_int *perform0(t_int *w);
static void rojo_dsp(t_rojo *x, t_signal **sp);
static void rojo_assist(t_rojo *x, void *b, long m, long a, char *s);
static void *rojo_new(t_symbol *s, short ac, t_atom *av);
void rojo_tilde_setup(void);
static void rojo_RandomInitialise(t_rojo *x, int ij,int kl);
static double rojo_RandomUniform(t_rojo *x);
static double rojo_RandomGaussian(t_rojo *x, double mean, double stddev);
static double rojo_RuidoRojo(t_rojo *x, double c, double a, double media, double desviacion);
/* some defines from ruidolib.h: */
#ifndef ABS
#define ABS(x) (x < 0 ? -(x) : (x))
#endif
#ifndef TRUE
#define TRUE 1
#define FALSE 0
#endif
/*------------------------------------------------------------------*/
void rojo_tilde_setup(void)
{
rojo_class = class_new(gensym("rojo~"), (t_newmethod)rojo_new, 0,
sizeof(t_rojo), CLASS_NOINLET, A_GIMME, 0);
class_addmethod(rojo_class, (t_method)rojo_dsp, gensym("dsp"), 0);
}
/*------------------------------------------------------------------*/
static t_int *perform0(t_int *w)
{
t_rojo *x = (t_rojo *)(w[1]);
t_float *out = (t_float *)(w[2]);
double scale = x->x_scale;
double alpha = x->x_alpha;
int n = (int)(w[3]);
if (alpha > 1.0) alpha = 1.0;/* MP 20060827 audio sticks if this is allowed */
else if (alpha < -1.0) alpha = -1.0;/* MP 20060827 audio sticks if this is allowed */
while (--n) *++out = scale * rojo_RuidoRojo(x, 0.0, alpha, 0.0, 1.0);
return (w+4);
}
/*------------------------------------------------------------------*/
static void rojo_dsp(t_rojo *x, t_signal **sp)
{
dsp_add(perform0, 3, x, sp[0]->s_vec, sp[0]->s_n);
}
/*------------------------------------------------------------------*/
/* outlet 0: red noise outlet */
/* inlet 0: (float) scale (0, x) */
/* inlet 1: (float), alpha (-1, 1) */
/*------------------------------------------------------------------*/
static void *rojo_new(t_symbol *s, short ac, t_atom *av)
{
t_rojo *x = (t_rojo *)pd_new(rojo_class);
outlet_new(&x->x_obj, gensym("signal"));
floatinlet_new(&x->x_obj, &x->x_scale);
floatinlet_new(&x->x_obj, &x->x_alpha);
post("rojo~ x[n] = scale * (alpha * x[n-1] + z[n])", 0);
if (ac == 2)
{
x->x_scale = (t_float) av[0].a_w.w_float;
x->x_alpha = (t_float) av[1].a_w.w_float;
}
else
{
x->x_scale = (t_float)0.1;
x->x_alpha = (t_float)0.7;
}
post("scale %lf", x->x_scale);
post("alpha %lf", x->x_alpha);
x->x_test = FALSE;
return (x);
}
/*
Miscellaneous routines
*/
/*
This Random Number Generator is based on the algorithm in a FORTRAN
version published by George Marsaglia and Arif Zaman, Florida State
University; ref.: see original comments below.
At the fhw (Fachhochschule Wiesbaden, W.Germany), Dept. of Computer
Science, we have written sources in further languages (C, Modula-2
Turbo-Pascal(3.0, 5.0), Basic and Ada) to get exactly the same test
results compared with the original FORTRAN version.
April 1989
Karl-L. Noell <NOELL@DWIFH1.BITNET>
and Helmut Weber <WEBER@DWIFH1.BITNET>
This random number generator originally appeared in "Toward a Universal
Random Number Generator" by George Marsaglia and Arif Zaman.
Florida State University Report: FSU-SCRI-87-50 (1987)
It was later modified by F. James and published in "A Review of Pseudo-
random Number Generators"
THIS IS THE BEST KNOWN RANDOM NUMBER GENERATOR AVAILABLE.
(However, a newly discovered technique can yield
a period of 10^600. But that is still in the development stage.)
It passes ALL of the tests for random number generators and has a period
of 2^144, is completely portable (gives bit identical results on all
machines with at least 24-bit mantissas in the floating point
representation).
The algorithm is a combination of a Fibonacci sequence (with lags of 97
and 33, and operation "subtraction plus one, modulo one") and an
"arithmetic sequence" (using subtraction).
Use IJ = 1802 & KL = 9373 to test the random number generator. The
subroutine RANMAR should be used to generate 20000 random numbers.
Then display the next six random numbers generated multiplied by 4096*4096
If the random number generator is working properly, the random numbers
should be:
6533892.0 14220222.0 7275067.0
6172232.0 8354498.0 10633180.0
*/
/*
This is the initialization routine for the random number generator.
NOTE: The seed variables can have values between: 0 <= IJ <= 31328
0 <= KL <= 30081
The random number sequences created by these two seeds are of sufficient
length to complete an entire calculation with. For example, if sveral
different groups are working on different parts of the same calculation,
each group could be assigned its own IJ seed. This would leave each group
with 30000 choices for the second seed. That is to say, this random
number generator can create 900 million different subsequences -- with
each subsequence having a length of approximately 10^30.
*/
static void rojo_RandomInitialise(t_rojo *x, int ij, int kl)
{
double s, t;
int ii, i, j, k, l, jj, m;
/*
Handle the seed range errors:
First random number seed must be between 0 and 31328.
Second seed must have a value between 0 and 30081.
*/
if (ij < 0 || ij > 31328 || kl < 0 || kl > 30081)
{
ij = 1802;
kl = 9373;
}
i = (ij / 177) % 177 + 2;
j = (ij % 177) + 2;
k = (kl / 169) % 178 + 1;
l = (kl % 169);
for (ii=0; ii<97; ii++)
{
s = 0.0;
t = 0.5;
for (jj=0; jj<24; jj++)
{
m = (((i * j) % 179) * k) % 179;
i = j;
j = k;
k = m;
l = (53 * l + 1) % 169;
if (((l * m % 64)) >= 32) s += t;
t *= 0.5;
}
x->x_u[ii] = s;
}
x->x_c = 362436.0 / 16777216.0;
x->x_cd = 7654321.0 / 16777216.0;
x->x_cm = 16777213.0 / 16777216.0;
x->x_i97 = 97;
x->x_j97 = 33;
x->x_test = TRUE;
}
/*
This is the random number generator proposed by George Marsaglia in
Florida State University Report: FSU-SCRI-87-50
*/
static double rojo_RandomUniform(t_rojo *x)
{
double uni;
/* Make sure the initialisation routine has been called */
if (!x->x_test) rojo_RandomInitialise(x, 1802,9373);
uni = x->x_u[x->x_i97-1] - x->x_u[x->x_j97-1];
if (uni <= 0.0) uni++;
x->x_u[x->x_i97-1] = uni;
x->x_i97--;
if (x->x_i97 == 0) x->x_i97 = 97;
x->x_j97--;
if (x->x_j97 == 0) x->x_j97 = 97;
x->x_c -= x->x_cd;
if (x->x_c < 0.0) x->x_c += x->x_cm;
uni -= x->x_c;
if (uni < 0.0) uni++;
return(uni);
}
/*
ALGORITHM 712, COLLECTED ALGORITHMS FROM ACM.
THIS WORK PUBLISHED IN TRANSACTIONS ON MATHEMATICAL SOFTWARE,
VOL. 18, NO. 4, DECEMBER, 1992, PP. 434-435.
The function returns a normally distributed pseudo-random number
with a given mean and standard devaiation. Calls are made to a
function subprogram which must return independent random
numbers uniform in the interval (0,1).
The algorithm uses the ratio of uniforms method of A.J. Kinderman
and J.F. Monahan augmented with quadratic bounding curves.
*/
static double rojo_RandomGaussian(t_rojo *x, double mean, double stddev)
{
double q, u, v, xx, y;
/*
Generate P = (u,v) uniform in rect. enclosing acceptance region
Make sure that any random numbers <= 0 are rejected, since
gaussian() requires uniforms > 0, but RandomUniform() delivers >= 0.
*/
do
{
u = rojo_RandomUniform(x);
v = rojo_RandomUniform(x);
if (u <= 0.0 || v <= 0.0)
{
u = 1.0;
v = 1.0;
}
v = 1.7156 * (v - 0.5);
/* Evaluate the quadratic form */
xx = u - 0.449871;
y = ABS(v) + 0.386595;
q = xx * xx + y * (0.19600 * y - 0.25472 * xx);
/* Accept P if inside inner ellipse */
if (q < 0.27597) break;
/* Reject P if outside outer ellipse, or outside acceptance region */
} while ((q > 0.27846) || (v * v > -4.0 * log(u) * u * u));
/* Return ratio of P's coordinates as the normal deviate */
return (mean + stddev * v / u);
}
/*-------------------------------------------------------------------------
Esta calcula una muestra de una secuencia de ruido rojo obtenida por un proceso
autoregresivo de primer orden (AR(1)) del tipo x[n] = c + a x[n-1] + z[n]
donce
c constante (casi siempre = 0 para su uso en max
a es constante -1 > a < 1
z[n] es la innovaci—n. una muestra de un ruido gaussiano
x[n] es la muestra actual
x[n-1] es la anterior muestra obtenida
media es la media del ruido gaussiano y desviacion es la desviaci—n tipica del ruido gaussiano
*/
/*---------translated by mrpeach:
Calculate a sample of a sequence of red noise obtained by a first-order
autoregressive process (AR(1)) of type x[n] = c + a x[n-1] + z[n]
where:
c = constant (always = 0 for maximum output)
a = constant (-1 < a < 1)
z[n] is a new sample of gaussian noise
x[n] is the current sample
x[n-1] is the previous sample obtained
media is the mean and desviacion is the standard deviation of the gaussian noise
*/
static double rojo_RuidoRojo(t_rojo *x, double c, double a, double media, double desviacion)
{
static double xx;
xx = c + a * xx + rojo_RandomGaussian(x, media, desviacion);
return xx;
}
/* end of rojo~.c */
|