
clone – ‘abstraction cloning’ external

the hand-coded way:

abstraction 1

route 1 2

abstraction 2

1 $1

2 $1

print handcode

0

$1 $2

0

t b f

pack f f

number of instance

input data

−−−

−−−

all this is inside clone

dac~ 1

using clone:

0

print outlet

$1 $2

0

t b f

pack f f

number of instance (0 = all)

clone abstraction 2

dac~ 1

input data

functionality:

Creating clone with [clone <name of abstraction> <number of instances>]
loads the specified number of instances of the abstraction. Each instance
can get it's instance number using $1. Additional arguments get passed on
to the abstractions as creation arguments that can be accessed using $2, $3
and so on. The inlets and outlets showing up represent the inlets and
outlets of the abstraction.
But there are some things to bear in mind: the order is always signal
before control and older before newer. Thus the order of inlets and outlets
showing up at the clone object will most likely be different from the order
in your abstraction!

inlets:
Any control data that is send to clone gets routed to one of the instances
of the abstraction or to all, depending on the form of data. A single float
value would go to all instances and thus appear at the corresponding inlets
of all instances. To route the float to a specific instance prepped it with
the number of that instance (e.g. use message [<instancenumber> <float>(.
Same applies for symbol, list and so on.
Any signal that is send to clone will be received by all instances! To send
only to selected instances use something like [throw~ <instancenumber>-in]
and a corresponding [catch~ $1-in] in your abstraction.

outlets:
Control data send to an abstraction's outlet gets send out clone's outlet
with the number of the sending instance preppended. This was you can easily
detect where the data was coming from or use [route 1 2 3 N] to split
it according to source.
Audio output of all instances gets summed up and is available via clone's
signal outlet(s). Keep in mind that your signal should not exceed a range
from -1.0 to +1.0 which is very likely when adding a lot of instances! To
get independent output for each instance use throw~ / catch~ as described
above.

editing the abstraction:
You can edit the abstraction as you can edit any Pd patch. But there are
some things that don't work. Most important, don't add or delete any inlets
or outlets to / from an abstraction! This will crash Pd (because Pd would
need to delete and reinsert the clone box to reflect your changes). Also,
don't load any abstractions using the 'reload' message that have a
different number of inlets & outlets! You can - of course - load other
files in case the number and combination of inlets and outlets does not
differ. And, finally, don't use abstractions in your abstraction. And,
please, don't use clone in the abstraction because of the exponential
growth of the total number of abstractions...

restrictions:
- maximum of 2 signal outlets/inlets and a maximum of 256 control

outlets/inlets allowed
- order of in-/outlets reflects order of creation, not order in terms

of position on canvas; signal in-/outlets (if any) come first
- deleting or adding any inlets / outlets from abstraction crashes

Pd -> build your abstraction before loading it into clone!!!
- no abstractions in the abstraction allowed
- changing font size in abstraction crashes Pd
- there are probably more things that crash Pd

