/* * Pure Data Packet module. * Copyright (c) by Tom Schouten * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. * */ #include #include #include #include #include #include #include "pdp.h" #ifndef _EiC #include "cv.h" #endif typedef struct pdp_opencv_dft_struct { t_object x_obj; t_float x_f; t_outlet *x_outlet0; t_outlet *x_outlet1; int x_packet0; int x_packet1; int x_packet2; int x_dropped; int x_queue_id; int x_width; int x_height; int x_size; int x_calculate; int dft_M; int dft_N; // The output and temporary images IplImage *image; IplImage *gray; IplImage *input_re; IplImage *input_im; IplImage *input_co; CvMat *dft_A; IplImage *image_re; IplImage *image_im; IplImage *image_mout; IplImage *image_pout; } t_pdp_opencv_dft; // rearrange the quadrants of Fourier image so that the origin is at // the image center void pdp_opencv_dft_shift_dft(CvArr * src_arr, CvArr * dst_arr ) { CvMat *tmp=NULL; CvMat q1stub, q2stub; CvMat q3stub, q4stub; CvMat d1stub, d2stub; CvMat d3stub, d4stub; CvMat * q1, * q2, * q3, * q4; CvMat * d1, * d2, * d3, * d4; CvSize size = cvGetSize(src_arr); CvSize dst_size = cvGetSize(dst_arr); int cx, cy; if(dst_size.width != size.width || dst_size.height != size.height){ error( "pdp_opencv_dft : source and destination arrays must have the same size" ); } if(src_arr==dst_arr){ tmp = cvCreateMat(size.height/2, size.width/2, cvGetElemType(src_arr)); } cx = size.width/2; cy = size.height/2; // image center q1 = cvGetSubRect( src_arr, &q1stub, cvRect(0,0,cx, cy) ); q2 = cvGetSubRect( src_arr, &q2stub, cvRect(cx,0,cx,cy) ); q3 = cvGetSubRect( src_arr, &q3stub, cvRect(cx,cy,cx,cy) ); q4 = cvGetSubRect( src_arr, &q4stub, cvRect(0,cy,cx,cy) ); d1 = cvGetSubRect( src_arr, &d1stub, cvRect(0,0,cx,cy) ); d2 = cvGetSubRect( src_arr, &d2stub, cvRect(cx,0,cx,cy) ); d3 = cvGetSubRect( src_arr, &d3stub, cvRect(cx,cy,cx,cy) ); d4 = cvGetSubRect( src_arr, &d4stub, cvRect(0,cy,cx,cy) ); if(src_arr!=dst_arr){ if( !CV_ARE_TYPES_EQ( q1, d1 )){ error( "pdp_opencv_dft : source and destination arrays must have the same format" ); } cvCopy(q3, d1, 0); cvCopy(q4, d2, 0); cvCopy(q1, d3, 0); cvCopy(q2, d4, 0); } else{ cvCopy(q3, tmp, 0); cvCopy(q1, q3, 0); cvCopy(tmp, q1, 0); cvCopy(q4, tmp, 0); cvCopy(q2, q4, 0); cvCopy(tmp, q2, 0); } if(src_arr==dst_arr){ cvReleaseMat( &tmp ); } } static void pdp_opencv_dft_process_rgb(t_pdp_opencv_dft *x) { t_pdp *header = pdp_packet_header(x->x_packet0); short int *data = (short int *)pdp_packet_data(x->x_packet0); t_pdp *newheader = pdp_packet_header(x->x_packet1); short int *newdata = (short int *)pdp_packet_data(x->x_packet1); t_pdp *phaseheader = pdp_packet_header(x->x_packet2); short int *phasedata = (short int *)pdp_packet_data(x->x_packet2); CvMat tmp; double m,M; int px,py; if ((x->x_width != (t_int)header->info.image.width) || (x->x_height != (t_int)header->info.image.height)) { post("pdp_opencv_dft :: resizing"); x->x_width = header->info.image.width; x->x_height = header->info.image.height; x->x_size = x->x_width*x->x_height; //Destroy cv_images cvReleaseImage( &x->image ); //cvReleaseImage( &x->gray ); cvReleaseImage( &x->input_re ); cvReleaseImage( &x->input_im ); cvReleaseImage( &x->input_co ); cvReleaseMat( &x->dft_A ); //cvReleaseImage( &x->image_re ); //cvReleaseImage( &x->image_im ); //cvReleaseImage( &x->image_mout ); //cvReleaseImage( &x->image_pout ); x->image = cvCreateImage(cvSize(x->x_width,x->x_height), IPL_DEPTH_8U, 3); x->gray = cvCreateImage(cvSize(x->image->width,x->image->height), IPL_DEPTH_8U, 1); x->input_re = cvCreateImage( cvGetSize(x->image), IPL_DEPTH_64F, 1); x->input_im = cvCreateImage( cvGetSize(x->image), IPL_DEPTH_64F, 1); x->input_co = cvCreateImage( cvGetSize(x->image), IPL_DEPTH_64F, 2); x->dft_M = cvGetOptimalDFTSize( x->gray->height - 1 ); x->dft_N = cvGetOptimalDFTSize( x->gray->width - 1 ); x->dft_A = cvCreateMat( x->dft_M, x->dft_N, CV_64FC2 ); x->image_re = cvCreateImage( cvSize(x->dft_N, x->dft_M), IPL_DEPTH_64F, 1); x->image_im = cvCreateImage( cvSize(x->dft_N, x->dft_M), IPL_DEPTH_64F, 1); x->image_mout = cvCreateImage( cvSize(x->image->width, x->image->height), IPL_DEPTH_8U, 1); x->image_pout = cvCreateImage( cvSize(x->image->width, x->image->height), IPL_DEPTH_8U, 1); } newheader->info.image.encoding = PDP_BITMAP_GREY; newheader->info.image.width = x->x_width; newheader->info.image.height = x->x_height; memcpy( x->image->imageData, data, x->x_size*3 ); cvCvtColor(x->image, x->gray, CV_BGR2GRAY); if ( x->x_calculate ) { // discrete fourier transform cvScale(x->gray, x->input_re, 1.0, 0.0); cvZero(x->input_im); cvMerge(x->input_re, x->input_im, NULL, NULL, x->input_co); // copy A to dft_A and pad dft_A with zeros cvGetSubRect( x->dft_A, &tmp, cvRect(0,0, x->gray->width, x->gray->height)); cvCopy( x->input_co, &tmp, NULL ); if( x->dft_A->cols > x->gray->width ) { cvGetSubRect( x->dft_A, &tmp, cvRect(x->gray->width,0, x->dft_A->cols - x->gray->width, x->gray->height)); cvZero( &tmp ); } // no need to pad bottom part of dft_A with zeros because of // use nonzero_rows parameter in cvDFT() call below cvDFT( x->dft_A, x->dft_A, CV_DXT_FORWARD, x->input_co->height ); // Split Fourier in real and imaginary parts cvSplit( x->dft_A, x->image_re, x->image_im, 0, 0 ); // calculate phase for( py=0; pyimage_re->height; py++ ) { double* ptrr = (double*) ( x->image_re->imageData + py * x->image_re->widthStep); double* ptri = (double*) ( x->image_im->imageData + py * x->image_im->widthStep); float* ptrp = (float*) ( x->image_pout->imageData + py * x->image_pout->widthStep); for( px=0; pximage_re->width; px++ ) { (*(ptrp+px)) = cvFastArctan( (float)*(ptri+px), (float)*(ptrr+px) ); } } // Compute the magnitude of the spectrum Mag = sqrt(Re^2 + Im^2) cvPow( x->image_re, x->image_re, 2.0); cvPow( x->image_im, x->image_im, 2.0); cvAdd( x->image_re, x->image_im, x->image_re, NULL); cvPow( x->image_re, x->image_re, 0.5 ); // Compute log(1 + Mag) cvAddS( x->image_re, cvScalarAll(1.0), x->image_re, NULL ); // 1 + Mag cvLog( x->image_re, x->image_re ); // log(1 + Mag) // Rearrange the quadrants of Fourier image so that the origin is at // the image center pdp_opencv_dft_shift_dft( x->image_re, x->image_re ); // normalize image cvMinMaxLoc(x->image_re, &m, &M, NULL, NULL, NULL); cvScale(x->image_re, x->image_re, 255.0/(M-m), 255.0*(-m)/(M-m)); for( py=0; pyimage_re->height; py++ ) { double* ptri = (double*) ( x->image_re->imageData + py * x->image_re->widthStep); unsigned char* ptrp = (unsigned char*) ( x->image_mout->imageData + py * x->image_mout->widthStep); for( px=0; pximage_re->width; px++ ) { if ( *(ptrp+px) > 255.0 ) post( "pdp_opencv_dft : error value over 255" ); (*(ptrp+px)) = (unsigned char)( (*(ptri+px)) ); } } x->x_calculate=0; } cvCvtColor(x->image_mout, x->image, CV_GRAY2RGB); memcpy( newdata, x->image->imageData, x->x_size*3 ); cvCvtColor(x->image_pout, x->image, CV_GRAY2RGB); memcpy( phasedata, x->image->imageData, x->x_size*3 ); return; } static void pdp_opencv_dft_sendpacket(t_pdp_opencv_dft *x) { /* release the packet */ pdp_packet_mark_unused(x->x_packet0); x->x_packet0 = -1; /* unregister and propagate if valid dest packet */ pdp_packet_pass_if_valid(x->x_outlet0, &x->x_packet1); /* unregister and propagate if valid dest packet */ pdp_packet_pass_if_valid(x->x_outlet1, &x->x_packet2); pdp_packet_mark_unused(x->x_packet1); pdp_packet_mark_unused(x->x_packet2); } static void pdp_opencv_dft_process(t_pdp_opencv_dft *x) { int encoding; t_pdp *header = 0; /* check if image data packets are compatible */ if ( (header = pdp_packet_header(x->x_packet0)) && (PDP_BITMAP == header->type)){ /* pdp_opencv_dft_process inputs and write into active inlet */ switch(pdp_packet_header(x->x_packet0)->info.image.encoding){ case PDP_BITMAP_RGB: x->x_packet1 = pdp_packet_clone_rw(x->x_packet0); x->x_packet2 = pdp_packet_clone_rw(x->x_packet0); pdp_queue_add(x, (void*)pdp_opencv_dft_process_rgb, (void*)pdp_opencv_dft_sendpacket, &x->x_queue_id); break; default: /* don't know the type, so dont pdp_opencv_dft_process */ break; } } } static void pdp_opencv_dft_calculate(t_pdp_opencv_dft *x) { x->x_calculate=1; } static void pdp_opencv_dft_input_0(t_pdp_opencv_dft *x, t_symbol *s, t_floatarg f) { /* if this is a register_ro message or register_rw message, register with packet factory */ if (s == gensym("register_rw")) x->x_dropped = pdp_packet_convert_ro_or_drop(&x->x_packet0, (int)f, pdp_gensym((char*)"bitmap/rgb/*") ); if ((s == gensym("process")) && (-1 != x->x_packet0) && (!x->x_dropped)) { /* add the process method and callback to the process queue */ pdp_opencv_dft_process(x); } } static void pdp_opencv_dft_free(t_pdp_opencv_dft *x) { int i; //destroy cv structures cvReleaseImage( &x->image ); //cvReleaseImage( &x->gray ); cvReleaseImage( &x->input_re ); cvReleaseImage( &x->input_im ); cvReleaseImage( &x->input_co ); cvReleaseMat( &x->dft_A ); //cvReleaseImage( &x->image_re ); //cvReleaseImage( &x->image_im ); //cvReleaseImage( &x->image_mout ); //cvReleaseImage( &x->image_pout ); pdp_queue_finish(x->x_queue_id); pdp_packet_mark_unused(x->x_packet0); } t_class *pdp_opencv_dft_class; void *pdp_opencv_dft_new(t_floatarg f) { int i; t_pdp_opencv_dft *x = (t_pdp_opencv_dft *)pd_new(pdp_opencv_dft_class); x->x_outlet0 = outlet_new(&x->x_obj, &s_anything); x->x_outlet1 = outlet_new(&x->x_obj, &s_anything); x->x_packet0 = -1; x->x_packet1 = -1; x->x_packet2 = -1; x->x_queue_id = -1; x->x_width = 320; x->x_height = 240; x->x_size = x->x_width * x->x_height; x->image = cvCreateImage(cvSize(x->x_width,x->x_height), IPL_DEPTH_8U, 3); x->gray = cvCreateImage(cvSize(x->x_width,x->x_height), IPL_DEPTH_8U, 1); x->input_re = cvCreateImage( cvGetSize(x->image), IPL_DEPTH_64F, 1); x->input_im = cvCreateImage( cvGetSize(x->image), IPL_DEPTH_64F, 1); x->input_co = cvCreateImage( cvGetSize(x->image), IPL_DEPTH_64F, 2); x->dft_M = cvGetOptimalDFTSize( x->gray->height - 1 ); x->dft_N = cvGetOptimalDFTSize( x->gray->width - 1 ); x->dft_A = cvCreateMat( x->dft_M, x->dft_N, CV_64FC2 ); x->image_re = cvCreateImage( cvSize(x->dft_N, x->dft_M), IPL_DEPTH_64F, 1); x->image_im = cvCreateImage( cvSize(x->dft_N, x->dft_M), IPL_DEPTH_64F, 1); x->image_mout = cvCreateImage( cvSize(x->dft_N, x->dft_M), IPL_DEPTH_8U, 1); x->image_pout = cvCreateImage( cvSize(x->dft_N, x->dft_M), IPL_DEPTH_8U, 1); // calculate first dft x->x_calculate=1; return (void *)x; } #ifdef __cplusplus extern "C" { #endif void pdp_opencv_dft_setup(void) { post( " pdp_opencv_dft"); pdp_opencv_dft_class = class_new(gensym("pdp_opencv_dft"), (t_newmethod)pdp_opencv_dft_new, (t_method)pdp_opencv_dft_free, sizeof(t_pdp_opencv_dft), 0, A_DEFFLOAT, A_NULL); class_addmethod(pdp_opencv_dft_class, (t_method)pdp_opencv_dft_input_0, gensym("pdp"), A_SYMBOL, A_DEFFLOAT, A_NULL); class_addmethod(pdp_opencv_dft_class, (t_method)pdp_opencv_dft_calculate, gensym("bang"), A_NULL); } #ifdef __cplusplus } #endif