//////////////////////////////////////////////////////// // // GEM - Graphics Environment for Multimedia // // zmoelnig@iem.kug.ac.at // // Implementation file // // Copyright (c) 1997-2000 Mark Danks. // Copyright (c) Günther Geiger. // Copyright (c) 2001-2002 IOhannes m zmoelnig. forum::für::umläute. IEM // Copyright (c) 2002 James Tittle & Chris Clepper // For information on usage and redistribution, and for a DISCLAIMER OF ALL // WARRANTIES, see the file, "GEM.LICENSE.TERMS" in this distribution. // ///////////////////////////////////////////////////////// // based on code written by Lluis Gomez i Bigorda ( lluisgomez _at_ hangar _dot_ org ) (pix_opencv) // pix_opencv_contours extract and simplify contours of incomming image // by Antoine Villeret - 2012 #include "pix_opencv_contours.h" #include #include using namespace cv; CPPEXTERN_NEW(pix_opencv_contours) ///////////////////////////////////////////////////////// // // pix_opencv_contours // ///////////////////////////////////////////////////////// // Constructor // ///////////////////////////////////////////////////////// pix_opencv_contours :: pix_opencv_contours() : \ m_epsilon(2), \ m_enable_contours(1), \ m_enable_hulls(1), \ m_enable_defects(1), \ m_hierarchy_level(-1), \ m_taboutput(0), \ m_enable_cvblob(0), \ m_areaThreshold(30), \ m_totalPointsCount(0), \ m_autoresize(0), \ m_x_arrayname(NULL), \ m_y_arrayname(NULL), \ m_z_arrayname(NULL) { m_dataout_middle = outlet_new(this->x_obj, 0); m_dataout_right = outlet_new(this->x_obj, 0); //~ post("build on %s at %s", __DATE__, __TIME__); } ///////////////////////////////////////////////////////// // Destructor // ///////////////////////////////////////////////////////// pix_opencv_contours :: ~pix_opencv_contours() { } ///////////////////////////////////////////////////////// // processImage // ///////////////////////////////////////////////////////// void pix_opencv_contours :: processImage(imageStruct &image) { if ( image.xsize < 0 || image.ysize < 0 ) return; Mat imgMat2, input; std::vector split_array; if ( image.csize == 1 ){ imgMat2 = Mat( image.ysize, image.xsize, CV_8UC1, image.data, image.csize*image.xsize); // just transform imageStruct to cv::Mat without copying data input = imgMat2; } else if ( image.csize == 4 ){ imgMat2 = Mat( image.ysize, image.xsize, CV_8UC4, image.data, image.csize*image.xsize); // just transform imageStruct to cv::Mat without copying data split(imgMat2,split_array); input = split_array[3]; // select alpha channel to find contours } else { error("suport only RGBA or GRAY image"); return; } cv::Mat imgMat = input.clone(); // copy data because findContours will destroy it... m_contours.clear(); m_convexhulls.clear(); m_area.clear(); /*****************/ /* Find Contours */ /*****************/ std::vector > contours; std::vector hierarchy; cv::findContours(imgMat, contours, hierarchy, CV_RETR_TREE, CV_CHAIN_APPROX_SIMPLE); /* std::cout << "hierarchy : \n" << std::endl; std::cout << "id\tnext\tprev\tchild\tparent" << std::endl; for ( size_t i = 0; i < contours.size(); i++ ) { std::cout << i << "\t" << hierarchy[i][0] << "\t" << hierarchy[i][1] << "\t" << hierarchy[i][2] << "\t" << hierarchy[i][3] << std::endl; } */ if ( m_hierarchy_level == -1 ) { for ( size_t i = 0; i < contours.size(); i++ ) { int area = cv::contourArea(contours[i], false); if ( area > m_areaThreshold ){ std::vector one_contour; if (m_epsilon > 0) { cv::approxPolyDP(contours[i], one_contour, m_epsilon, true); } else { one_contour = contours[i]; } m_contours.push_back(one_contour); m_area.push_back(area); } } } else if ( m_hierarchy_level==-2 ) { for ( size_t i = 0; i < contours.size(); i++ ) { int area = cv::contourArea(contours[i], false); if ( area > m_areaThreshold && hierarchy[i][2] == -1 ){ // if contour area > threshold and if contour has no child (a hole) std::vector one_contour; if (m_epsilon > 0) { cv::approxPolyDP(contours[i], one_contour, m_epsilon, true); } else { one_contour = contours[i]; } m_contours.push_back(one_contour); m_area.push_back(area); } } } else { int i=0; int hierarchy_level=0; while ( i < (int) contours.size() && i!=-1 && hierarchy_level != -1 ) { int area = cv::contourArea(contours[i], false); if ( area > m_areaThreshold && hierarchy_level == m_hierarchy_level ) { std::vector one_contour; if (m_epsilon > 0) { cv::approxPolyDP(contours[i], one_contour, m_epsilon, true); } else { one_contour = contours[i]; } m_contours.push_back(one_contour); // push contour if it's big enough m_area.push_back(area); } if ( hierarchy_level < m_hierarchy_level && hierarchy[i][2] != -1 ){ // si on n'a pas atteint le niveau choisi et qu'il y a un enfant on le prend hierarchy_level++; int j = i; i=hierarchy[j][2]; // get the first child } else if ( hierarchy[i][0] != -1 ) { i=hierarchy[i][0]; // get the next contour at this hierarchy level if it exists } else { while ( hierarchy_level != -1 ) { hierarchy_level--; i=hierarchy[i][3]; if ( i < 0 ) break; // pas de parent... if ( hierarchy[i][0] != -1 ) { i=hierarchy[i][0]; // next du parent break; } } } } } outputCount(); outputBlobs(image); outputContours(image); //~ cv::drawContours(imgMat2, m_contours, -1, cv::Scalar(128,255,255), 3); /**********************/ /* Compute Convexhull */ /**********************/ if ( m_enable_defects || m_enable_hulls ) { for ( size_t i = 0; i < m_contours.size(); i++ ) { std::vector convexhull; cv::convexHull(m_contours[i], convexhull); m_convexhulls.push_back(convexhull); } } if ( m_enable_hulls ) { for ( size_t i = 0 ; i < m_convexhulls.size() ; i++ ) { int list_size=(int) m_convexhulls[i].size()*2+2; t_atom* data = new t_atom[list_size]; SETFLOAT(data,m_convexhulls[i].size()); // nb of points for current convexhull SETFLOAT(data+1, 2); // each point is represented by 2 values t_atom* apt=data+2; for ( size_t j = 0 ; j < m_convexhulls[i].size() ; j++){ int k = m_convexhulls[i][j]; cv::Point pt = m_contours[i][k]; SETFLOAT(apt, (float) pt.x/image.xsize); SETFLOAT(apt+1, (float) pt.y/image.ysize); apt+=2; } outlet_anything(m_dataout_middle, gensym("convexhull"), list_size, data); if (data) delete data; data = NULL; } } /*****************************/ /* Compute convexity defects */ /*****************************/ if ( m_enable_defects ) { for ( size_t i = 0 ; i < m_contours.size() ; i++ ) { std::vector defects(m_convexhulls[i].size()); cv::Ptr storage = cvCreateMemStorage(); cv::InputArray _points = m_contours[i]; cv::InputArray _hull = m_convexhulls[i]; cv::Mat points = _points.getMat(); cv::Mat hull = _hull.getMat(); CvMat c_points = points, c_hull = hull; CvSeq* seq = cvConvexityDefects(&c_points, &c_hull, storage); double norm = sqrtf( image.xsize*image.ysize ); if ( !seq ) { error("seq undefined..."); continue; } int list_size=(int) seq->total*7+2; if (seq->total > 0) { t_atom* data = new t_atom[list_size]; SETFLOAT(data, seq->total); // number of defect for current contour SETFLOAT(data+1, 7); // a defect is represented by 7 values : start point (x,y), end point (x,y), farthest point (x,y) and defect depth cv::SeqIterator it = cv::Seq(seq).begin(); // TODO : crash sometimes but don't know why yet... t_atom* apt = data+2; for ( int j = 0 ; j < seq->total ; j++, ++it ) { CvConvexityDefect& defect = *it; SETFLOAT(apt, (float) defect.start->x/image.xsize); SETFLOAT(apt+1, (float) defect.start->y/image.ysize); SETFLOAT(apt+2, (float) defect.end->x/image.xsize); SETFLOAT(apt+3, (float) defect.end->y/image.ysize); SETFLOAT(apt+4, (float) defect.depth_point->x/image.xsize); SETFLOAT(apt+5, (float) defect.depth_point->y/image.ysize); SETFLOAT(apt+6, (float) defect.depth/norm); apt+=7; } outlet_anything(m_dataout_middle, gensym("convexitydefects"), list_size, data); if (data) delete data; data = NULL; } } } } ///////////////////////////////////////////////////////// // static member function // ///////////////////////////////////////////////////////// void pix_opencv_contours :: obj_setupCallback(t_class *classPtr) { CPPEXTERN_MSG1(classPtr, "epsilon", epsilonMess, double); CPPEXTERN_MSG1(classPtr, "area", areaMess, double); CPPEXTERN_MSG1(classPtr, "contours", contoursMess, double); CPPEXTERN_MSG1(classPtr, "cvblobOutput", cvblobMess, double); CPPEXTERN_MSG1(classPtr, "convexhulls", convexhullsMess, double); CPPEXTERN_MSG1(classPtr, "convexitydefects", convexitydefectsMess, double); CPPEXTERN_MSG1(classPtr, "hierarchy_level", hierarchyMess, double); CPPEXTERN_MSG1(classPtr, "taboutput", taboutputMess, float); CPPEXTERN_MSG3(classPtr, "settab", tableMess, t_symbol*, t_symbol*, t_symbol*); } void pix_opencv_contours :: outputCount(){ m_totalPointsCount=0; for( size_t i = 0 ; i < m_contours.size(); i++ ){ m_totalPointsCount+=m_contours[i].size(); } m_totalPointsCount+=m_contours.size()*2; // add 2 points for each contour (on start and end) t_atom count_atom[2]; SETFLOAT(count_atom, m_contours.size()); SETFLOAT(count_atom+1, m_totalPointsCount); outlet_anything(m_dataout_right, gensym("count"), 2, count_atom); } void pix_opencv_contours :: outputBlobs(imageStruct &image){ if ( m_enable_cvblob ) { int blob_num=m_contours.size(); int blobMatrixWidth=17; int blob_atom_size = 2+blob_num*blobMatrixWidth; t_atom* blob_atom = new t_atom[blob_atom_size]; for ( int i = 0; i < blob_atom_size; i++){ SETFLOAT(blob_atom+i,0); } SETFLOAT(blob_atom+1, blobMatrixWidth); int count(0); int imageArea = image.xsize * image.ysize; for( size_t i = 0 ; i < m_contours.size(); i++ ) { if (!m_contours[i].empty() && m_contours[i].size() > 2) { /* compute centroid */ Moments mu = moments(m_contours[i]); Point2f centroid; centroid.x=mu.m10/mu.m00; centroid.y=mu.m01/mu.m00; cv::RotatedRect rot_rect = cv::minAreaRect(m_contours[i]); cv::Point2f corners[4]; rot_rect.points(corners); double length = cv::arcLength(m_contours[i],true); float area = m_area[i]; t_atom* apt = blob_atom+2+i*blobMatrixWidth; SETFLOAT(apt, count); // set Id count++; SETFLOAT(apt+1, rot_rect.center.x/image.xsize); // rotrect center SETFLOAT(apt+2, rot_rect.center.y/image.ysize); SETFLOAT(apt+3, rot_rect.size.width/image.xsize); // blob size SETFLOAT(apt+4, rot_rect.size.height/image.ysize); SETFLOAT(apt+5, rot_rect.angle); // rotrect angle SETFLOAT(apt+6, area/imageArea); // blob area in % of image sizes t_atom* apt2 = apt+7; // blob rot rect 4 corners for (int j=0;j<4;j++) { SETFLOAT(apt2, corners[j].x/image.xsize); SETFLOAT(apt2+1, corners[j].y/image.ysize); apt2+=2; } SETFLOAT(apt+15, m_contours[i].size()); // number of points in segment SETFLOAT(apt+16, (float) length); } } SETFLOAT(blob_atom, (float) count); if (count) outlet_anything(m_dataout_right, gensym("cvblob"), count*blobMatrixWidth+2, blob_atom); else outlet_float(m_dataout_right, 0); if (blob_atom) delete blob_atom; blob_atom = NULL; } } void pix_opencv_contours :: outputContours(imageStruct &image){ if ( m_enable_contours ){ if ( !m_taboutput ){ for( size_t i = 0 ; i < m_contours.size() ; i++ ) { if (!m_contours[i].empty() && m_contours[i].size() > 2) { int size = 2+2*m_contours[i].size(); t_atom*acontours = new t_atom[size]; t_atom* apt=acontours; SETFLOAT(apt, static_cast(m_contours[i].size())); SETFLOAT(apt+1, 2.0); apt+=2; size_t j; for ( j = 0 ; j < m_contours[i].size() ; j++){ cv::Point pt = m_contours[i][j]; SETFLOAT(apt,(float) pt.x/image.xsize); SETFLOAT(apt+1,(float) pt.y/image.ysize); apt+=2; } outlet_anything(m_dataout_middle, gensym("contour"), size, acontours); if(acontours) { delete[] acontours; acontours=NULL; } } } } else { //~ put contours in 3 tables. //~ contours are separated by 0 values if ( m_x_arrayname == NULL || m_y_arrayname == NULL || m_z_arrayname == NULL){ error("please settab before trying to write into..."); return; } int vecxsize(0), vecysize(0), veczsize(0), vecsize(0); t_garray *ax, *ay, *az; t_word *vecx, *vecy, *vecz; //~ check if array exist if (!(ax = (t_garray *)pd_findbyclass(m_x_arrayname, garray_class))){ error("%s: no such array", m_x_arrayname->s_name); return; } if (!(ay = (t_garray *)pd_findbyclass(m_y_arrayname, garray_class))){ error("%s: no such array", m_y_arrayname->s_name); return; } if (!(az = (t_garray *)pd_findbyclass(m_z_arrayname, garray_class))){ error("%s: no such array", m_z_arrayname->s_name); return; } if (!garray_getfloatwords(ax, &vecxsize, &vecx)){ error("%s: bad template for tabwrite", m_x_arrayname->s_name); return; } else if ( vecxsize != m_totalPointsCount && m_autoresize ){ garray_resize_long(ax,m_totalPointsCount); if (!garray_getfloatwords(ax, &vecxsize, &vecx)){ error("%s: can't resize correctly", m_x_arrayname->s_name); return; } } if (!garray_getfloatwords(ay, &vecysize, &vecy)){ error("%s: bad template for tabwrite", m_y_arrayname->s_name); return; } else if ( vecysize != m_totalPointsCount && m_autoresize ){ garray_resize_long(ay,m_totalPointsCount); if (!garray_getfloatwords(ay, &vecysize, &vecy)){ error("%s: can't resize correctly", m_y_arrayname->s_name); return; } } if (!garray_getfloatwords(az, &veczsize, &vecz)){ error("%s: bad template for tabwrite", m_z_arrayname->s_name); return; } else if ( veczsize != m_totalPointsCount && m_autoresize){ garray_resize_long(az,m_totalPointsCount); if (!garray_getfloatwords(az, &veczsize, &vecz)){ error("%s: can't resize correctly", m_z_arrayname->s_name); return; } } vecsize=min(min(vecxsize,vecysize),veczsize); int n=0; for( size_t i = 0 ; i < m_contours.size(); i++ ) { if ( n >= vecsize ) { error("array are not wide enough"); break; } unsigned int j; cv::Point pt; pt = m_contours[i][0]; //~ start with blank point vecx[n].w_float = (float) pt.x/image.xsize; vecy[n].w_float = (float) pt.y/image.ysize; vecz[n].w_float = 0.; n++; for ( j = 0 ; j < m_contours[i].size() ; j++) { pt = m_contours[i][j]; vecx[n].w_float = (float) pt.x/image.xsize; vecy[n].w_float = (float) pt.y/image.ysize; vecz[n].w_float = 1.; n++; } // close contour if ( n < vecsize ){ pt = m_contours[i][0]; vecx[n].w_float = (float) pt.x/image.xsize; vecy[n].w_float = (float) pt.y/image.ysize; vecz[n].w_float = 1.; n++; } } //~ comment the redraw fnt if not needed garray_redraw(ax); garray_redraw(ay); garray_redraw(az); } } } ///////////////////////////////////////////////////////// // messages handling // ///////////////////////////////////////////////////////// void pix_opencv_contours :: epsilonMess(double arg) { m_epsilon = arg > 0 ? arg : 0.; } void pix_opencv_contours :: areaMess(double arg) { m_areaThreshold = arg > 0 ? arg : 30.; } void pix_opencv_contours :: contoursMess(double arg) { m_enable_contours = arg > 0; } void pix_opencv_contours :: cvblobMess(double arg) { m_enable_cvblob = arg > 0; } void pix_opencv_contours :: convexhullsMess(double arg) { m_enable_hulls = arg > 0; } void pix_opencv_contours :: convexitydefectsMess(double arg) { m_enable_defects = arg > 0; } void pix_opencv_contours :: hierarchyMess(int arg) { m_hierarchy_level = arg < -2 ? -1 : arg; m_mode = m_hierarchy_level == -1 ? CV_RETR_LIST : CV_RETR_TREE; } void pix_opencv_contours :: taboutputMess(float arg) { m_taboutput = arg > 0; } void pix_opencv_contours :: tableMess(t_symbol*xarray, t_symbol*yarray, t_symbol*zarray) { // check if arrays exist m_x_arrayname = xarray; m_y_arrayname = yarray; m_z_arrayname = zarray; m_taboutput = 1; }