//////////////////////////////////////////////////////// // // GEM - Graphics Environment for Multimedia // // zmoelnig@iem.kug.ac.at // // Implementation file // // Copyright (c) 1997-2000 Mark Danks. // Copyright (c) Günther Geiger. // Copyright (c) 2001-2002 IOhannes m zmoelnig. forum::für::umläute. IEM // Copyright (c) 2002 James Tittle & Chris Clepper // For information on usage and redistribution, and for a DISCLAIMER OF ALL // WARRANTIES, see the file, "GEM.LICENSE.TERMS" in this distribution. // ///////////////////////////////////////////////////////// #include "pix_opencv_dft.h" CPPEXTERN_NEW(pix_opencv_dft) ///////////////////////////////////////////////////////// // // pix_opencv_dft // ///////////////////////////////////////////////////////// // Constructor // ///////////////////////////////////////////////////////// pix_opencv_dft :: pix_opencv_dft() { int i; x_calculate = 1; comp_xsize=0; comp_ysize=0; rgb = NULL; rgba = NULL; gray = NULL; input_re = NULL; input_im = NULL; input_co = NULL; dft_A = NULL; image_re = NULL; image_im = NULL; image_mout = NULL; } ///////////////////////////////////////////////////////// // Destructor // ///////////////////////////////////////////////////////// pix_opencv_dft :: ~pix_opencv_dft() { //Destroy cv_images to clean memory cvReleaseImage( &rgb ); cvReleaseImage( &rgba ); //cvReleaseImage( &gray ); cvReleaseImage( &input_re ); cvReleaseImage( &input_im ); cvReleaseImage( &input_co ); cvReleaseMat( &dft_A ); //cvReleaseImage( &mage_re ); //cvReleaseImage( &image_im ); //cvReleaseImage( &image_mout ); } ///////////////////////////////////////////////////////// // shiftDFT // ///////////////////////////////////////////////////////// void pix_opencv_dft :: shiftDFT(CvArr * src_arr, CvArr * dst_arr ) { CvMat *tmp=NULL; CvMat q1stub, q2stub; CvMat q3stub, q4stub; CvMat d1stub, d2stub; CvMat d3stub, d4stub; CvMat * q1, * q2, * q3, * q4; CvMat * d1, * d2, * d3, * d4; CvSize size = cvGetSize(src_arr); CvSize dst_size = cvGetSize(dst_arr); int cx, cy; if(dst_size.width != size.width || dst_size.height != size.height){ return; } if(src_arr==dst_arr){ tmp = cvCreateMat(size.height/2, size.width/2, cvGetElemType(src_arr)); } cx = size.width/2; cy = size.height/2; // image center q1 = cvGetSubRect( src_arr, &q1stub, cvRect(0,0,cx, cy) ); q2 = cvGetSubRect( src_arr, &q2stub, cvRect(cx,0,cx,cy) ); q3 = cvGetSubRect( src_arr, &q3stub, cvRect(cx,cy,cx,cy) ); q4 = cvGetSubRect( src_arr, &q4stub, cvRect(0,cy,cx,cy) ); d1 = cvGetSubRect( src_arr, &d1stub, cvRect(0,0,cx,cy) ); d2 = cvGetSubRect( src_arr, &d2stub, cvRect(cx,0,cx,cy) ); d3 = cvGetSubRect( src_arr, &d3stub, cvRect(cx,cy,cx,cy) ); d4 = cvGetSubRect( src_arr, &d4stub, cvRect(0,cy,cx,cy) ); if(src_arr!=dst_arr) { if( !CV_ARE_TYPES_EQ( q1, d1 )){ return; } cvCopy(q3, d1, 0); cvCopy(q4, d2, 0); cvCopy(q1, d3, 0); cvCopy(q2, d4, 0); } else { cvCopy(q3, tmp, 0); cvCopy(q1, q3, 0); cvCopy(tmp, q1, 0); cvCopy(q4, tmp, 0); cvCopy(q2, q4, 0); cvCopy(tmp, q2, 0); } if(src_arr==dst_arr){ cvReleaseMat( &tmp ); } } ///////////////////////////////////////////////////////// // processImage // ///////////////////////////////////////////////////////// void pix_opencv_dft :: processRGBAImage(imageStruct &image) { unsigned char *pixels = image.data; int i; CvMat tmp; double m,M; int px,py; if ((this->comp_xsize!=image.xsize)&&(this->comp_ysize!=image.ysize)) { this->comp_xsize=image.xsize; this->comp_ysize=image.ysize; //Destroy cv_images to clean memory cvReleaseImage( &rgb ); cvReleaseImage( &rgba ); //cvReleaseImage( &gray ); cvReleaseImage( &input_re ); cvReleaseImage( &input_im ); cvReleaseImage( &input_co ); cvReleaseMat( &dft_A ); //cvReleaseImage( &image_re ); //cvReleaseImage( &image_im ); //cvReleaseImage( &image_mout ); //cvReleaseImage( &image_pout ); //Create cv_images rgb = cvCreateImage(cvSize(image.xsize,image.ysize), IPL_DEPTH_8U, 3); rgba = cvCreateImage(cvSize(image.xsize,image.ysize), IPL_DEPTH_8U, 4); gray = cvCreateImage(cvSize(image.xsize,image.ysize), IPL_DEPTH_8U, 1); input_re = cvCreateImage( cvGetSize(rgb), IPL_DEPTH_64F, 1); input_im = cvCreateImage( cvGetSize(rgb), IPL_DEPTH_64F, 1); input_co = cvCreateImage( cvGetSize(rgb), IPL_DEPTH_64F, 2); dft_M = cvGetOptimalDFTSize( image.ysize - 1 ); dft_N = cvGetOptimalDFTSize( image.xsize - 1 ); dft_A = cvCreateMat( dft_M, dft_N, CV_64FC2 ); image_re = cvCreateImage( cvSize(dft_N, dft_M), IPL_DEPTH_64F, 1); image_im = cvCreateImage( cvSize(dft_N, dft_M), IPL_DEPTH_64F, 1); image_mout = cvCreateImage( cvSize(dft_N, dft_M), IPL_DEPTH_8U, 1); } memcpy( rgba->imageData, image.data, image.xsize*image.ysize*4 ); cvCvtColor(rgba, gray, CV_BGRA2GRAY); if ( x_calculate ) { // discrete fourier transform cvScale(gray, input_re, 1.0, 0.0); cvZero(input_im); cvMerge(input_re, input_im, NULL, NULL, input_co); // copy A to dft_A and pad dft_A with zeros cvGetSubRect( dft_A, &tmp, cvRect(0,0, gray->width, gray->height)); cvCopy( input_co, &tmp, NULL ); if( dft_A->cols > gray->width ) { cvGetSubRect( dft_A, &tmp, cvRect(gray->width,0, dft_A->cols - gray->width, gray->height)); cvZero( &tmp ); } // no need to pad bottom part of dft_A with zeros because of // use nonzero_rows parameter in cvDFT() call below cvDFT( dft_A, dft_A, CV_DXT_FORWARD, input_co->height ); // Split Fourier in real and imaginary parts cvSplit( dft_A, image_re, image_im, 0, 0 ); // Compute the magnitude of the spectrum Mag = sqrt(Re^2 + Im^2) cvPow( image_re, image_re, 2.0); cvPow( image_im, image_im, 2.0); cvAdd( image_re, image_im, image_re, NULL); cvPow( image_re, image_re, 0.5 ); // Compute log(1 + Mag) cvAddS( image_re, cvScalarAll(1.0), image_re, NULL ); // 1 + Mag cvLog( image_re, image_re ); // log(1 + Mag) // Rearrange the quadrants of Fourier image so that the origin is at // the image center this->shiftDFT( image_re, image_re ); // normalize image cvMinMaxLoc(image_re, &m, &M, NULL, NULL, NULL); cvScale(image_re, image_re, 255.0/(M-m), 255.0*(-m)/(M-m)); for( py=0; pyheight; py++ ) { double* ptri = (double*) ( image_re->imageData + py * image_re->widthStep); unsigned char* ptrp = (unsigned char*) ( image_mout->imageData + py * image_mout->widthStep); for( px=0; pxwidth; px++ ) { if ( *(ptrp+px) > 255.0 ) post( "pix_opencv_dft : error value over 255" ); (*(ptrp+px)) = (unsigned char)( (*(ptri+px)) ); } } x_calculate=0; } cvCvtColor(image_mout, rgba, CV_GRAY2RGBA); memcpy( image.data, rgba->imageData, image.xsize*image.ysize*4 ); } void pix_opencv_dft :: processRGBImage(imageStruct &image) { unsigned char *pixels = image.data; int i; CvMat tmp; double m,M; int px,py; if ((this->comp_xsize!=image.xsize)&&(this->comp_ysize!=image.ysize)) { this->comp_xsize=image.xsize; this->comp_ysize=image.ysize; //Destroy cv_images to clean memory cvReleaseImage( &rgb ); cvReleaseImage( &rgba ); //cvReleaseImage( &gray ); cvReleaseImage( &input_re ); cvReleaseImage( &input_im ); cvReleaseImage( &input_co ); cvReleaseMat( &dft_A ); //cvReleaseImage( &image_re ); //cvReleaseImage( &image_im ); //cvReleaseImage( &image_mout ); //cvReleaseImage( &image_pout ); //Create cv_images rgb = cvCreateImage(cvSize(image.xsize,image.ysize), IPL_DEPTH_8U, 3); rgba = cvCreateImage(cvSize(image.xsize,image.ysize), IPL_DEPTH_8U, 4); gray = cvCreateImage(cvSize(image.xsize,image.ysize), IPL_DEPTH_8U, 1); input_re = cvCreateImage( cvGetSize(rgb), IPL_DEPTH_64F, 1); input_im = cvCreateImage( cvGetSize(rgb), IPL_DEPTH_64F, 1); input_co = cvCreateImage( cvGetSize(rgb), IPL_DEPTH_64F, 2); dft_M = cvGetOptimalDFTSize( image.ysize - 1 ); dft_N = cvGetOptimalDFTSize( image.xsize - 1 ); dft_A = cvCreateMat( dft_M, dft_N, CV_64FC2 ); image_re = cvCreateImage( cvSize(dft_N, dft_M), IPL_DEPTH_64F, 1); image_im = cvCreateImage( cvSize(dft_N, dft_M), IPL_DEPTH_64F, 1); image_mout = cvCreateImage( cvSize(dft_N, dft_M), IPL_DEPTH_8U, 1); } memcpy( rgb->imageData, image.data, image.xsize*image.ysize*3 ); cvCvtColor(rgb, gray, CV_BGR2GRAY); if ( x_calculate ) { // discrete fourier transform cvScale(gray, input_re, 1.0, 0.0); cvZero(input_im); cvMerge(input_re, input_im, NULL, NULL, input_co); // copy A to dft_A and pad dft_A with zeros cvGetSubRect( dft_A, &tmp, cvRect(0,0, gray->width, gray->height)); cvCopy( input_co, &tmp, NULL ); if( dft_A->cols > gray->width ) { cvGetSubRect( dft_A, &tmp, cvRect(gray->width,0, dft_A->cols - gray->width, gray->height)); cvZero( &tmp ); } // no need to pad bottom part of dft_A with zeros because of // use nonzero_rows parameter in cvDFT() call below cvDFT( dft_A, dft_A, CV_DXT_FORWARD, input_co->height ); // Split Fourier in real and imaginary parts cvSplit( dft_A, image_re, image_im, 0, 0 ); // Compute the magnitude of the spectrum Mag = sqrt(Re^2 + Im^2) cvPow( image_re, image_re, 2.0); cvPow( image_im, image_im, 2.0); cvAdd( image_re, image_im, image_re, NULL); cvPow( image_re, image_re, 0.5 ); // Compute log(1 + Mag) cvAddS( image_re, cvScalarAll(1.0), image_re, NULL ); // 1 + Mag cvLog( image_re, image_re ); // log(1 + Mag) // Rearrange the quadrants of Fourier image so that the origin is at // the image center this->shiftDFT( image_re, image_re ); // normalize image cvMinMaxLoc(image_re, &m, &M, NULL, NULL, NULL); cvScale(image_re, image_re, 255.0/(M-m), 255.0*(-m)/(M-m)); for( py=0; pyheight; py++ ) { double* ptri = (double*) ( image_re->imageData + py * image_re->widthStep); unsigned char* ptrp = (unsigned char*) ( image_mout->imageData + py * image_mout->widthStep); for( px=0; pxwidth; px++ ) { if ( *(ptrp+px) > 255.0 ) post( "pix_opencv_dft : error value over 255" ); (*(ptrp+px)) = (unsigned char)( (*(ptri+px)) ); } } x_calculate=0; } cvCvtColor(image_mout, rgb, CV_GRAY2RGB); memcpy( image.data, rgb->imageData, image.xsize*image.ysize*3 ); } void pix_opencv_dft :: processYUVImage(imageStruct &image) { post( "pix_opencv_contours_convexity : yuv format not supported" ); } void pix_opencv_dft :: processGrayImage(imageStruct &image) { unsigned char *pixels = image.data; int i; CvMat tmp; double m,M; int px,py; if ((this->comp_xsize!=image.xsize)&&(this->comp_ysize!=image.ysize)) { this->comp_xsize=image.xsize; this->comp_ysize=image.ysize; //Destroy cv_images to clean memory cvReleaseImage( &rgb ); cvReleaseImage( &rgba ); //cvReleaseImage( &gray ); cvReleaseImage( &input_re ); cvReleaseImage( &input_im ); cvReleaseImage( &input_co ); cvReleaseMat( &dft_A ); //cvReleaseImage( &image_re ); //cvReleaseImage( &image_im ); //cvReleaseImage( &image_mout ); //cvReleaseImage( &image_pout ); //Create cv_images rgb = cvCreateImage(cvSize(image.xsize,image.ysize), IPL_DEPTH_8U, 3); rgba = cvCreateImage(cvSize(image.xsize,image.ysize), IPL_DEPTH_8U, 4); gray = cvCreateImage(cvSize(image.xsize,image.ysize), IPL_DEPTH_8U, 1); input_re = cvCreateImage( cvGetSize(rgb), IPL_DEPTH_64F, 1); input_im = cvCreateImage( cvGetSize(rgb), IPL_DEPTH_64F, 1); input_co = cvCreateImage( cvGetSize(rgb), IPL_DEPTH_64F, 2); dft_M = cvGetOptimalDFTSize( image.ysize - 1 ); dft_N = cvGetOptimalDFTSize( image.xsize - 1 ); dft_A = cvCreateMat( dft_M, dft_N, CV_64FC2 ); image_re = cvCreateImage( cvSize(dft_N, dft_M), IPL_DEPTH_64F, 1); image_im = cvCreateImage( cvSize(dft_N, dft_M), IPL_DEPTH_64F, 1); image_mout = cvCreateImage( cvSize(dft_N, dft_M), IPL_DEPTH_8U, 1); } memcpy( gray->imageData, image.data, image.xsize*image.ysize ); if ( x_calculate ) { // discrete fourier transform cvScale(gray, input_re, 1.0, 0.0); cvZero(input_im); cvMerge(input_re, input_im, NULL, NULL, input_co); // copy A to dft_A and pad dft_A with zeros cvGetSubRect( dft_A, &tmp, cvRect(0,0, gray->width, gray->height)); cvCopy( input_co, &tmp, NULL ); if( dft_A->cols > gray->width ) { cvGetSubRect( dft_A, &tmp, cvRect(gray->width,0, dft_A->cols - gray->width, gray->height)); cvZero( &tmp ); } // no need to pad bottom part of dft_A with zeros because of // use nonzero_rows parameter in cvDFT() call below cvDFT( dft_A, dft_A, CV_DXT_FORWARD, input_co->height ); // Split Fourier in real and imaginary parts cvSplit( dft_A, image_re, image_im, 0, 0 ); // Compute the magnitude of the spectrum Mag = sqrt(Re^2 + Im^2) cvPow( image_re, image_re, 2.0); cvPow( image_im, image_im, 2.0); cvAdd( image_re, image_im, image_re, NULL); cvPow( image_re, image_re, 0.5 ); // Compute log(1 + Mag) cvAddS( image_re, cvScalarAll(1.0), image_re, NULL ); // 1 + Mag cvLog( image_re, image_re ); // log(1 + Mag) // Rearrange the quadrants of Fourier image so that the origin is at // the image center this->shiftDFT( image_re, image_re ); // normalize image cvMinMaxLoc(image_re, &m, &M, NULL, NULL, NULL); cvScale(image_re, image_re, 255.0/(M-m), 255.0*(-m)/(M-m)); for( py=0; pyheight; py++ ) { double* ptri = (double*) ( image_re->imageData + py * image_re->widthStep); unsigned char* ptrp = (unsigned char*) ( image_mout->imageData + py * image_mout->widthStep); for( px=0; pxwidth; px++ ) { if ( *(ptrp+px) > 255.0 ) post( "pix_opencv_dft : error value over 255" ); (*(ptrp+px)) = (unsigned char)( (*(ptri+px)) ); } } x_calculate=0; } memcpy( image.data, image_mout->imageData, image.xsize*image.ysize ); } ///////////////////////////////////////////////////////// // static member function // ///////////////////////////////////////////////////////// void pix_opencv_dft :: obj_setupCallback(t_class *classPtr) { class_addmethod(classPtr, (t_method)&pix_opencv_dft::calculateCallback, gensym("bang"), A_NULL); } void pix_opencv_dft :: calculateCallback(void *data) { GetMyClass(data)->x_calculate = 1.0; }