// // GEM - Graphics Environment for Multimedia // // zmoelnig@iem.kug.ac.at // // Implementation file // // Copyright (c) 1997-2000 Mark Danks. // Copyright (c) Günther Geiger. // Copyright (c) 2001-2002 IOhannes m zmoelnig. forum::für::umläute. IEM // Copyright (c) 2002 James Tittle & Chris Clepper // For information on usage and redistribution, and for a DISCLAIMER OF ALL // WARRANTIES, see the file, "GEM.LICENSE.TERMS" in this distribution. // ///////////////////////////////////////////////////////// #include "pix_opencv_of_hs.h" #include CPPEXTERN_NEW(pix_opencv_of_hs) ///////////////////////////////////////////////////////// // // pix_opencv_of_hs // ///////////////////////////////////////////////////////// // Constructor // ///////////////////////////////////////////////////////// pix_opencv_of_hs :: pix_opencv_of_hs() { comp_xsize=320; comp_ysize=240; m_meanout = outlet_new(this->x_obj, &s_anything); m_maxout = outlet_new(this->x_obj, &s_anything); x_nightmode=0; x_threshold=100; x_lambda=1.0; x_useprevious = 0; x_minblocks = 10; x_velsize.width = comp_xsize; x_velsize.height = comp_ysize; // initialize font cvInitFont( &font, CV_FONT_HERSHEY_PLAIN, 1.0, 1.0, 0, 1, 8 ); rgba = cvCreateImage( cvSize(comp_xsize, comp_ysize), 8, 4 ); rgb = cvCreateImage( cvSize(comp_xsize, comp_ysize), 8, 3 ); grey = cvCreateImage( cvSize(comp_xsize, comp_ysize), 8, 1 ); prev_grey = cvCreateImage( cvSize(comp_xsize, comp_ysize), 8, 1 ); x_velx = cvCreateImage( x_velsize, IPL_DEPTH_32F, 1 ); x_vely = cvCreateImage( x_velsize, IPL_DEPTH_32F, 1 ); } ///////////////////////////////////////////////////////// // Destructor // ///////////////////////////////////////////////////////// pix_opencv_of_hs :: ~pix_opencv_of_hs() { // Destroy cv_images cvReleaseImage( &rgba ); cvReleaseImage( &rgb ); cvReleaseImage( &grey ); cvReleaseImage( &prev_grey ); cvReleaseImage( &x_velx ); cvReleaseImage( &x_vely ); } ///////////////////////////////////////////////////////// // processImage // ///////////////////////////////////////////////////////// void pix_opencv_of_hs :: processRGBAImage(imageStruct &image) { int px,py; double globangle=0.0, globx=0.0, globy=0.0, maxamp=0.0, maxangle=0.0; int nbblocks=0; CvPoint orig, dest; double angle=0.0; double hypotenuse=0.0; if ((this->comp_xsize!=image.xsize)&&(this->comp_ysize!=image.ysize)) { this->comp_xsize=image.xsize; this->comp_ysize=image.ysize; x_velsize.width = comp_xsize; x_velsize.height = comp_ysize; cvReleaseImage( &rgba ); cvReleaseImage( &rgb ); cvReleaseImage( &grey ); cvReleaseImage( &prev_grey ); cvReleaseImage( &x_velx ); cvReleaseImage( &x_vely ); rgba = cvCreateImage( cvSize(comp_xsize, comp_ysize), 8, 4 ); rgb = cvCreateImage( cvSize(comp_xsize, comp_ysize), 8, 3 ); grey = cvCreateImage( cvSize(comp_xsize, comp_ysize), 8, 1 ); prev_grey = cvCreateImage( cvSize(comp_xsize, comp_ysize), 8, 1 ); x_velx = cvCreateImage( x_velsize, IPL_DEPTH_32F, 1 ); x_vely = cvCreateImage( x_velsize, IPL_DEPTH_32F, 1 ); } memcpy( rgba->imageData, image.data, image.xsize*image.ysize*4 ); // Convert to hsv cvCvtColor(rgba, rgb, CV_BGRA2BGR); cvCvtColor(rgb, grey, CV_BGR2GRAY); if( x_nightmode ) cvZero( rgb ); cvCalcOpticalFlowHS( prev_grey, grey, x_useprevious, x_velx, x_vely, x_lambda, cvTermCriteria(CV_TERMCRIT_ITER|CV_TERMCRIT_EPS,20,0.03) ); nbblocks = 0; globangle = 0; globx = 0; globy = 0; for( py=0; py= x_threshold) { cvLine( rgb, orig, dest, CV_RGB(0,255,0), 1, CV_AA, 0 ); orig.x = (int) (dest.x - (6) * cos(angle + M_PI / 4)); orig.y = (int) (dest.y + (6) * sin(angle + M_PI / 4)); cvLine( rgb, orig, dest, CV_RGB(0,0,255), 1, CV_AA, 0 ); orig.x = (int) (dest.x - (6) * cos(angle - M_PI / 4)); orig.y = (int) (dest.y + (6) * sin(angle - M_PI / 4)); cvLine( rgb, orig, dest, CV_RGB(0,0,255), 1, CV_AA, 0 ); globx = globx+cvGet2D(x_velx, py, px).val[0]; globy = globy+cvGet2D(x_vely, py, px).val[0]; if ( hypotenuse > maxamp ) { maxamp = hypotenuse; maxangle = angle; } // post( "pdp_opencv_of_bm : block %d : amp : %f : angle : %f", nbblocks, hypotenuse, (angle*180)/M_PI ); nbblocks++; } } } if ( nbblocks >= x_minblocks ) { globangle=-atan2( globy, globx ); // post( "pdp_opencv_of_bm : globangle : %f", (globangle*180)/M_PI ); orig.x = (int) (comp_xsize/2); orig.y = (int) (comp_ysize/2); dest.x = (int) (orig.x+((comp_xsize>comp_ysize)?comp_ysize/2:comp_xsize/2)*cos(globangle)); dest.y = (int) (orig.y-((comp_xsize>comp_ysize)?comp_ysize/2:comp_xsize/2)*sin(globangle)); cvLine( rgb, orig, dest, CV_RGB(255,255,255), 3, CV_AA, 0 ); orig.x = (int) (dest.x - (6) * cos(globangle + M_PI / 4)); orig.y = (int) (dest.y + (6) * sin(globangle + M_PI / 4)); cvLine( rgb, orig, dest, CV_RGB(255,255,255), 3, CV_AA, 0 ); orig.x = (int) (dest.x - (6) * cos(globangle - M_PI / 4)); orig.y = (int) (dest.y + (6) * sin(globangle - M_PI / 4)); cvLine( rgb, orig, dest, CV_RGB(255,255,255), 3, CV_AA, 0 ); // outputs the average angle of movement globangle = (globangle*180)/M_PI; SETFLOAT(&x_list[0], globangle); outlet_list( m_meanout, 0, 1, x_list ); // outputs the amplitude and angle of the maximum movement maxangle = (maxangle*180)/M_PI; SETFLOAT(&x_list[0], maxamp); SETFLOAT(&x_list[1], maxangle); outlet_list( m_maxout, 0, 2, x_list ); } memcpy( prev_grey->imageData, grey->imageData, image.xsize*image.ysize ); cvCvtColor(rgb, rgba, CV_BGR2BGRA); memcpy( image.data, rgba->imageData, image.xsize*image.ysize*4 ); } void pix_opencv_of_hs :: processRGBImage(imageStruct &image) { int px,py; double globangle=0.0, globx=0.0, globy=0.0, maxamp=0.0, maxangle=0.0; int nbblocks=0; CvPoint orig, dest; double angle=0.0; double hypotenuse=0.0; if ((this->comp_xsize!=image.xsize)&&(this->comp_ysize!=image.ysize)) { this->comp_xsize=image.xsize; this->comp_ysize=image.ysize; x_velsize.width = comp_xsize; x_velsize.height = comp_ysize; cvReleaseImage( &rgba ); cvReleaseImage( &rgb ); cvReleaseImage( &grey ); cvReleaseImage( &prev_grey ); cvReleaseImage( &x_velx ); cvReleaseImage( &x_vely ); rgba = cvCreateImage( cvSize(comp_xsize, comp_ysize), 8, 4 ); rgb = cvCreateImage( cvSize(comp_xsize, comp_ysize), 8, 3 ); grey = cvCreateImage( cvSize(comp_xsize, comp_ysize), 8, 1 ); prev_grey = cvCreateImage( cvSize(comp_xsize, comp_ysize), 8, 1 ); x_velx = cvCreateImage( x_velsize, IPL_DEPTH_32F, 1 ); x_vely = cvCreateImage( x_velsize, IPL_DEPTH_32F, 1 ); } memcpy( rgb->imageData, image.data, image.xsize*image.ysize*3 ); // Convert to hsv cvCvtColor(rgba, rgb, CV_BGRA2BGR); cvCvtColor(rgb, grey, CV_BGR2GRAY); if( x_nightmode ) cvZero( rgb ); cvCalcOpticalFlowHS( prev_grey, grey, x_useprevious, x_velx, x_vely, x_lambda, cvTermCriteria(CV_TERMCRIT_ITER|CV_TERMCRIT_EPS,20,0.03) ); nbblocks = 0; globangle = 0; globx = 0; globy = 0; for( py=0; py= x_threshold) { cvLine( rgb, orig, dest, CV_RGB(0,255,0), 1, CV_AA, 0 ); orig.x = (int) (dest.x - (6) * cos(angle + M_PI / 4)); orig.y = (int) (dest.y + (6) * sin(angle + M_PI / 4)); cvLine( rgb, orig, dest, CV_RGB(0,0,255), 1, CV_AA, 0 ); orig.x = (int) (dest.x - (6) * cos(angle - M_PI / 4)); orig.y = (int) (dest.y + (6) * sin(angle - M_PI / 4)); cvLine( rgb, orig, dest, CV_RGB(0,0,255), 1, CV_AA, 0 ); globx = globx+cvGet2D(x_velx, py, px).val[0]; globy = globy+cvGet2D(x_vely, py, px).val[0]; if ( hypotenuse > maxamp ) { maxamp = hypotenuse; maxangle = angle; } // post( "pdp_opencv_of_bm : block %d : amp : %f : angle : %f", nbblocks, hypotenuse, (angle*180)/M_PI ); nbblocks++; } } } if ( nbblocks >= x_minblocks ) { globangle=-atan2( globy, globx ); // post( "pdp_opencv_of_bm : globangle : %f", (globangle*180)/M_PI ); orig.x = (int) (comp_xsize/2); orig.y = (int) (comp_ysize/2); dest.x = (int) (orig.x+((comp_xsize>comp_ysize)?comp_ysize/2:comp_xsize/2)*cos(globangle)); dest.y = (int) (orig.y-((comp_xsize>comp_ysize)?comp_ysize/2:comp_xsize/2)*sin(globangle)); cvLine( rgb, orig, dest, CV_RGB(255,255,255), 3, CV_AA, 0 ); orig.x = (int) (dest.x - (6) * cos(globangle + M_PI / 4)); orig.y = (int) (dest.y + (6) * sin(globangle + M_PI / 4)); cvLine( rgb, orig, dest, CV_RGB(255,255,255), 3, CV_AA, 0 ); orig.x = (int) (dest.x - (6) * cos(globangle - M_PI / 4)); orig.y = (int) (dest.y + (6) * sin(globangle - M_PI / 4)); cvLine( rgb, orig, dest, CV_RGB(255,255,255), 3, CV_AA, 0 ); // outputs the average angle of movement globangle = (globangle*180)/M_PI; SETFLOAT(&x_list[0], globangle); outlet_list( m_meanout, 0, 1, x_list ); // outputs the amplitude and angle of the maximum movement maxangle = (maxangle*180)/M_PI; SETFLOAT(&x_list[0], maxamp); SETFLOAT(&x_list[1], maxangle); outlet_list( m_maxout, 0, 2, x_list ); } memcpy( prev_grey->imageData, grey->imageData, image.xsize*image.ysize ); memcpy( image.data, rgb->imageData, image.xsize*image.ysize*3 ); } void pix_opencv_of_hs :: processYUVImage(imageStruct &image) { post( "pix_opencv_of_hs : yuv format not supported" ); } void pix_opencv_of_hs :: processGrayImage(imageStruct &image) { int px,py; double globangle=0.0, globx=0.0, globy=0.0, maxamp=0.0, maxangle=0.0; int nbblocks=0; CvPoint orig, dest; double angle=0.0; double hypotenuse=0.0; if ((this->comp_xsize!=image.xsize)&&(this->comp_ysize!=image.ysize)) { this->comp_xsize=image.xsize; this->comp_ysize=image.ysize; x_velsize.width = comp_xsize; x_velsize.height = comp_ysize; cvReleaseImage( &rgba ); cvReleaseImage( &rgb ); cvReleaseImage( &grey ); cvReleaseImage( &prev_grey ); cvReleaseImage( &x_velx ); cvReleaseImage( &x_vely ); rgba = cvCreateImage( cvSize(comp_xsize, comp_ysize), 8, 4 ); rgb = cvCreateImage( cvSize(comp_xsize, comp_ysize), 8, 3 ); grey = cvCreateImage( cvSize(comp_xsize, comp_ysize), 8, 1 ); prev_grey = cvCreateImage( cvSize(comp_xsize, comp_ysize), 8, 1 ); x_velx = cvCreateImage( x_velsize, IPL_DEPTH_32F, 1 ); x_vely = cvCreateImage( x_velsize, IPL_DEPTH_32F, 1 ); } memcpy( grey->imageData, image.data, image.xsize*image.ysize ); if( x_nightmode ) cvZero( grey ); cvCalcOpticalFlowHS( prev_grey, grey, x_useprevious, x_velx, x_vely, x_lambda, cvTermCriteria(CV_TERMCRIT_ITER|CV_TERMCRIT_EPS,20,0.03) ); nbblocks = 0; globangle = 0; globx = 0; globy = 0; for( py=0; py= x_threshold) { cvLine( grey, orig, dest, CV_RGB(0,255,0), 1, CV_AA, 0 ); orig.x = (int) (dest.x - (6) * cos(angle + M_PI / 4)); orig.y = (int) (dest.y + (6) * sin(angle + M_PI / 4)); cvLine( grey, orig, dest, CV_RGB(0,0,255), 1, CV_AA, 0 ); orig.x = (int) (dest.x - (6) * cos(angle - M_PI / 4)); orig.y = (int) (dest.y + (6) * sin(angle - M_PI / 4)); cvLine( grey, orig, dest, CV_RGB(0,0,255), 1, CV_AA, 0 ); globx = globx+cvGet2D(x_velx, py, px).val[0]; globy = globx+cvGet2D(x_vely, py, px).val[0]; if ( hypotenuse > maxamp ) { maxamp = hypotenuse; maxangle = angle; } // post( "pdp_opencv_of_bm : block %d : amp : %f : angle : %f", nbblocks, hypotenuse, (angle*180)/M_PI ); nbblocks++; } } } if ( nbblocks >= x_minblocks ) { globangle=-atan2( globy, globx ); // post( "pdp_opencv_of_bm : globangle : %f", (globangle*180)/M_PI ); orig.x = (int) (comp_xsize/2); orig.y = (int) (comp_ysize/2); dest.x = (int) (orig.x+((comp_xsize>comp_ysize)?comp_ysize/2:comp_xsize/2)*cos(globangle)); dest.y = (int) (orig.y-((comp_xsize>comp_ysize)?comp_ysize/2:comp_xsize/2)*sin(globangle)); cvLine( grey, orig, dest, CV_RGB(255,255,255), 3, CV_AA, 0 ); orig.x = (int) (dest.x - (6) * cos(globangle + M_PI / 4)); orig.y = (int) (dest.y + (6) * sin(globangle + M_PI / 4)); cvLine( grey, orig, dest, CV_RGB(255,255,255), 3, CV_AA, 0 ); orig.x = (int) (dest.x - (6) * cos(globangle - M_PI / 4)); orig.y = (int) (dest.y + (6) * sin(globangle - M_PI / 4)); cvLine( grey, orig, dest, CV_RGB(255,255,255), 3, CV_AA, 0 ); // outputs the average angle of movement globangle = (globangle*180)/M_PI; SETFLOAT(&x_list[0], globangle); outlet_list( m_meanout, 0, 1, x_list ); // outputs the amplitude and angle of the maximum movement maxangle = (maxangle*180)/M_PI; SETFLOAT(&x_list[0], maxamp); SETFLOAT(&x_list[1], maxangle); outlet_list( m_maxout, 0, 2, x_list ); } memcpy( prev_grey->imageData, grey->imageData, image.xsize*image.ysize ); memcpy( image.data, grey->imageData, image.xsize*image.ysize ); } ///////////////////////////////////////////////////////// // static member function // ///////////////////////////////////////////////////////// void pix_opencv_of_hs :: obj_setupCallback(t_class *classPtr) { class_addmethod(classPtr, (t_method)&pix_opencv_of_hs::nightModeMessCallback, gensym("nightmode"), A_FLOAT, A_NULL); class_addmethod(classPtr, (t_method)&pix_opencv_of_hs::tresholdMessCallback, gensym("threshold"), A_FLOAT, A_NULL); class_addmethod(classPtr, (t_method)&pix_opencv_of_hs::lambdaMessCallback, gensym("lambda"), A_FLOAT, A_NULL); class_addmethod(classPtr, (t_method)&pix_opencv_of_hs::usePreviousMessCallback, gensym("useprevious"), A_FLOAT, A_NULL); class_addmethod(classPtr, (t_method)&pix_opencv_of_hs::minBlocksMessCallback, gensym("minblocks"), A_FLOAT, A_NULL); } void pix_opencv_of_hs :: nightModeMessCallback(void *data, t_floatarg nightmode) { GetMyClass(data)->nightModeMess((float)nightmode); } void pix_opencv_of_hs :: tresholdMessCallback(void *data, t_floatarg threshold) { GetMyClass(data)->tresholdMess((float)threshold); } void pix_opencv_of_hs :: lambdaMessCallback(void *data, t_floatarg lambda) { GetMyClass(data)->lambdaMess((float)lambda); } void pix_opencv_of_hs :: usePreviousMessCallback(void *data, t_floatarg previous) { GetMyClass(data)->usePreviousMess((float)previous); } void pix_opencv_of_hs :: minBlocksMessCallback(void *data, t_floatarg minblocks) { GetMyClass(data)->minBlocksMess((float)minblocks); } void pix_opencv_of_hs :: nightModeMess(float nightmode) { if ( ( (int)nightmode==0 ) || ( (int)nightmode==1 ) ) x_nightmode = (int)nightmode; } void pix_opencv_of_hs :: tresholdMess(float threshold) { if ( (int)threshold>0 ) x_threshold = (int)threshold; } void pix_opencv_of_hs :: lambdaMess(float lambda) { if (lambda>0.0) x_lambda = (double)lambda; } void pix_opencv_of_hs :: usePreviousMess(float previous) { if ((previous==0.0)||(previous==1.0)) x_useprevious = (int)previous; } void pix_opencv_of_hs :: minBlocksMess(float minblocks) { if (minblocks>=1.0) x_minblocks = (int)minblocks; }