1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
|
////////////////////////////////////////////////////////
//
// GEM - Graphics Environment for Multimedia
//
// zmoelnig@iem.kug.ac.at
//
// Implementation file
//
// Copyright (c) 1997-2000 Mark Danks.
// Copyright (c) Günther Geiger.
// Copyright (c) 2001-2002 IOhannes m zmoelnig. forum::für::umläute. IEM
// Copyright (c) 2002 James Tittle & Chris Clepper
// For information on usage and redistribution, and for a DISCLAIMER OF ALL
// WARRANTIES, see the file, "GEM.LICENSE.TERMS" in this distribution.
//
/////////////////////////////////////////////////////////
// based on code written by Lluis Gomez i Bigorda ( lluisgomez _at_ hangar _dot_ org ) (pix_opencv)
// pix_opencv_opticalflow compute optical flow, several algorithms are available in one object
// by Antoine Villeret - 2012
#include "pix_opencv_opticalflow.h"
CPPEXTERN_NEW(pix_opencv_opticalflow)
/////////////////////////////////////////////////////////
//
// pix_opencv_opticalflow
//
/////////////////////////////////////////////////////////
// Constructor
//
/////////////////////////////////////////////////////////
pix_opencv_opticalflow :: pix_opencv_opticalflow() : m_gain(1.)
{
m_dataout_middle = outlet_new(this->x_obj, 0);
m_dataout_right = outlet_new(this->x_obj, 0);
//~ post("build on %s at %s", __DATE__, __TIME__);
}
/////////////////////////////////////////////////////////
// Destructor
//
/////////////////////////////////////////////////////////
pix_opencv_opticalflow :: ~pix_opencv_opticalflow()
{
}
/////////////////////////////////////////////////////////
// render
//
/////////////////////////////////////////////////////////
void pix_opencv_opticalflow :: processRGBAImage(imageStruct &image)
{
if ( image.xsize <= 0 || image.ysize <= 0 ) return;
cv::Mat rgbaImage( image.ysize, image.xsize, CV_8UC4, image.data, image.csize*image.xsize); // just transform imageStruct to IplImage without copying data
//~cvtColor(rgbaImage, m_curr, cv::COLOR_RGBA2RGB); //convert RGBA to RGB
cvtColor(rgbaImage, m_curr, cv::COLOR_RGBA2GRAY); //convert RGBA to RGB
if (m_prev.size() != m_curr.size()){
m_prev = m_curr.clone();
}
//~cv::calcOpticalFlowSF(m_curr, m_prev, m_flow, 3, 2, 4, 4.1, 25.5, 18, 55.0, 25.5, 0.35, 18, 55.0, 25.5, 10);
cv::calcOpticalFlowFarneback(m_curr, m_prev, flow, 0.5, 3, 15, 3, 5, 1.2, 0);
m_prev = m_curr.clone(); // copy data
cv::Size size = m_curr.size();
// here is the idiom: check the arrays for continuity and,
// if this is the case,
// treat the arrays as 1D vectors
if( m_curr.isContinuous() && m_prev.isContinuous() && m_flow.isContinuous() )
{
size.width *= size.height;
size.height = 1;
}
float gain=m_gain;
if ( m_normalize ){
float maxrad=1;
for (int y = 0; y < flow.rows; ++y)
{
for (int x = 0; x < flow.cols; ++x)
{
cv::Point2f u = flow.at<cv::Point2f>(x,y);
if (!isFlowCorrect(u))
continue;
float rad = sqrt(u.x * u.x + u.y * u.y);
maxrad = maxrad>rad?maxrad:rad;
}
}
gain=1/maxrad;
}
for( int i = 0; i < size.height; i++ )
{
// when the arrays are continuous,
// the outer loop is executed only once
const float* ptrFlow = flow.ptr<float>(i);
unsigned char* data=image.data+i*image.csize*image.xsize;
for( int j = 0; j < 2*size.width; j+=2 )
{
float fx = ptrFlow[j];
float fy = ptrFlow[j+1];
cv::Vec3b pix;
pix = computeColor(fx*gain, fy*gain);
for ( int k = 0; k < 3; k++ ){
data[k]=pix[k];
}
//~printf("pix %d : %d\t%d\t%d\n",j+i*size.width, pix[0],pix[1], pix[2]);
//~m_colorcode.computeColor(fx, fy, data);
data+=4;
}
}
}
/////////////////////////////////////////////////////////
// static member function
//
/////////////////////////////////////////////////////////
void pix_opencv_opticalflow :: obj_setupCallback(t_class *classPtr)
{
CPPEXTERN_MSG1(classPtr, "gain", gainMess, double);
CPPEXTERN_MSG1(classPtr, "normalize", normalizeMess, double);
}
/////////////////////////////////////////////////////////
// messages handling
//
/////////////////////////////////////////////////////////
void pix_opencv_opticalflow :: gainMess(double arg)
{
m_gain = arg > 0 ? arg : 3.;
}
void pix_opencv_opticalflow :: normalizeMess(double arg)
{
m_normalize = arg > 0;
}
///////////////////////////
// static function for color coding
///////////////////////////
using namespace cv;
static cv::Vec3b computeColor(float fx, float fy)
{
static bool first = true;
// relative lengths of color transitions:
// these are chosen based on perceptual similarity
// (e.g. one can distinguish more shades between red and yellow
// than between yellow and green)
const int RY = 15;
const int YG = 6;
const int GC = 4;
const int CB = 11;
const int BM = 13;
const int MR = 6;
const int NCOLS = RY + YG + GC + CB + BM + MR;
static Vec3i colorWheel[NCOLS];
if (first)
{
int k = 0;
for (int i = 0; i < RY; ++i, ++k)
colorWheel[k] = Vec3i(255, 255 * i / RY, 0);
for (int i = 0; i < YG; ++i, ++k)
colorWheel[k] = Vec3i(255 - 255 * i / YG, 255, 0);
for (int i = 0; i < GC; ++i, ++k)
colorWheel[k] = Vec3i(0, 255, 255 * i / GC);
for (int i = 0; i < CB; ++i, ++k)
colorWheel[k] = Vec3i(0, 255 - 255 * i / CB, 255);
for (int i = 0; i < BM; ++i, ++k)
colorWheel[k] = Vec3i(255 * i / BM, 0, 255);
for (int i = 0; i < MR; ++i, ++k)
colorWheel[k] = Vec3i(255, 0, 255 - 255 * i / MR);
first = false;
}
const float rad = sqrt(fx * fx + fy * fy);
const float a = atan2(-fy, -fx) / (float) CV_PI;
const float fk = (a + 1.0f) / 2.0f * (NCOLS - 1);
const int k0 = static_cast<int>(fk);
const int k1 = (k0 + 1) % NCOLS;
const float f = fk - k0;
Vec3b pix;
for (int b = 0; b < 3; b++)
{
const float col0 = colorWheel[k0][b] / 255.0f;
const float col1 = colorWheel[k1][b] / 255.0f;
float col = (1 - f) * col0 + f * col1;
if (rad <= 1)
col = 1 - rad * (1 - col); // increase saturation with radius
else
col *= .75; // out of range
pix[2 - b] = static_cast<uchar>(255.0 * col);
}
return pix;
}
inline bool isFlowCorrect(cv::Point2f u)
{
return !cvIsNaN(u.x) && !cvIsNaN(u.y) && fabs(u.x) < 1e9 && fabs(u.y) < 1e9;
}
|