#include "m_pd.h"
#include "math.h"

#define max(a,b) ( ((a) > (b)) ? (a) : (b) ) 
#define min(a,b) ( ((a) < (b)) ? (a) : (b) ) 

static t_class *mass2D_class;

typedef struct _mass2D {
  t_object  x_obj;
  t_float posX_old_1, posX_old_2, posY_old_1, posY_old_2, Xinit, Yinit;
  t_float forceX, forceY, VX, VY, dX, dY, onoff;
  t_float mass2D, seuil, damp;
  t_float minX, maxX, minY, maxY;
  t_atom  pos_new[2], vitesse[3], force[3];
  t_outlet *position2D_new, *vitesse_out, *force_out;
  t_symbol *x_sym; // receive
  unsigned int x_state; // random
  t_float x_f; // random
} t_mass2D;

static int makeseed2D(void)
{
    static unsigned int random_nextseed = 1489853723;
    random_nextseed = random_nextseed * 435898247 + 938284287;
    return (random_nextseed & 0x7fffffff);
}

static float random_bang2D(t_mass2D *x)
{
    int nval;
    int range = 2000000;
	float rnd;
	unsigned int randval = x->x_state;
	x->x_state = randval = randval * 472940017 + 832416023;
    nval = ((double)range) * ((double)randval)
    	* (1./4294967296.);
    if (nval >= range) nval = range-1;

	rnd=nval;

	rnd-=1000000;
	rnd=rnd/1000000.;	//pour mettre entre -1 et 1;
    return (rnd);
}

void mass2D_seuil(t_mass2D *x, t_floatarg f1)
{
  x->seuil = f1;
}

void mass2D_on(t_mass2D *x)
{
  x->onoff = 1;
}

void mass2D_off(t_mass2D *x)
{
  x->onoff = 0;
}

void mass2D_minX(t_mass2D *x, t_floatarg f1)
{
  x->minX = f1;
}

void mass2D_maxX(t_mass2D *x, t_floatarg f1)
{
  x->maxX = f1;
}

void mass2D_minY(t_mass2D *x, t_floatarg f1)
{
  x->minY = f1;
}

void mass2D_maxY(t_mass2D *x, t_floatarg f1)
{
  x->maxY = f1;
}

void mass2D_force(t_mass2D *x, t_floatarg f1, t_floatarg f2)
{
  x->forceX = x->forceX+f1;
  x->forceY = x->forceY+f2;
}

void mass2D_displace(t_mass2D *x, t_floatarg f1, t_floatarg f2)
{
  x->dX += f1;
  x->dY += f2;
}

void mass2D_damp(t_mass2D *x, t_floatarg f1)
{
  x->damp = f1;
}

void mass2D_dX(t_mass2D *x, t_floatarg f1)
{
  x->dX += f1;
}

void mass2D_dY(t_mass2D *x, t_floatarg f1)
{
  x->dY += f1;
}

void mass2D_bang(t_mass2D *x)
{
  t_float posX_new, posY_new, vX=1, vY=1;
 if (x->onoff != 0)
 {

  if (x->seuil > 0)
  {
	if (x->posY_old_1 == x->minY) // si on est en dehors de la structure -> frottement sec sur les bords
	{
		if (fabs(x->forceX)<=(x->seuil * -(x->forceY)))
		vX = 0;		// on est a l'interieur du cone de frotement,  
	}

	if (x->posY_old_1 == x->maxY) // si on est en dehors de la structure -> frottement sec sur les bords
	{
		if (fabs(x->forceX)<=(x->seuil * (x->forceY)))
		vX = 0;		// on est a l'interieur du cone de frotement,  
	}

	if (x->posX_old_1 == x->minX) // si on est en dehors de la structure -> frottement sec sur les bords
	{
	    if (fabs(x->forceX)<=(x->seuil * -(x->forceY)))
		vY = 0;		// on est a l'interieur du cone de frotement,  
	}

	if (x->posX_old_1 == x->maxX) // si on est en dehors de la structure -> frottement sec sur les bords
	{
		if (fabs(x->forceX)<=(x->seuil * (x->forceY)))
		vY = 0;		// on est a l'interieur du cone de frotement,  
	}
  }

 	x->forceX += x->damp * ((x->posX_old_2)-(x->posX_old_1));
	x->forceY += x->damp * ((x->posY_old_2)-(x->posY_old_1)); // damping

  if (x->mass2D != 0)
  {
	  posX_new = x->forceX/x->mass2D + 2*x->posX_old_1 - x->posX_old_2;
  	  posY_new = x->forceY/x->mass2D + 2*x->posY_old_1 - x->posY_old_2;
  }
  else 
  {
	posX_new = x->posX_old_1;
	posY_new = x->posY_old_1;
  }

  if (vX==0)
    posX_new = x->posX_old_1;			// on n'a pas de mv qd on est a l'interieur du cone de frotement
  if (vY==0)
    posY_new = x->posY_old_1;

  posX_new = max(min(posX_new, x->maxX), x->minX);
  posY_new = max(min(posY_new, x->maxY), x->minY);

  posX_new += x->dX;
  posY_new += x->dY;

  x->posX_old_1 += x->dX;				// pour eviter l'inertie
  x->posY_old_1 += x->dY;

  SETFLOAT(&(x->pos_new[0]), posX_new );
  SETFLOAT(&(x->pos_new[1]), posY_new );
 
  x->posX_old_2 = x->posX_old_1;
  x->posX_old_1 = posX_new;

  x->posY_old_2 = x->posY_old_1;
  x->posY_old_1 = posY_new;

  SETFLOAT(&(x->force[0]), x->forceX );
  SETFLOAT(&(x->force[1]), x->forceY );
  SETFLOAT(&(x->force[2]), sqrt( (x->forceX * x->forceX) + (x->forceY * x->forceY) ));
 
//  x->forceX=0;
//  x->forceY=0;

  x->forceX = random_bang2D(x)*1e-25;
  x->forceY = random_bang2D(x)*1e-25; // avoiding denormal problem by adding low amplitude noise


  x->dX=0;
  x->dY=0;

  x->VX =  x->posX_old_1 -  x->posX_old_2;
  x->VY =  x->posY_old_1 -  x->posY_old_2;

  SETFLOAT(&(x->vitesse[0]), x->VX );
  SETFLOAT(&(x->vitesse[1]), x->VY );
  SETFLOAT(&(x->vitesse[2]), sqrt( (x->VX * x->VX) + (x->VY * x->VY) ));
 
  outlet_anything(x->vitesse_out, gensym("velocity2D"), 3, x->vitesse);
  outlet_anything(x->force_out, gensym("force2D"), 3, x->force);
  outlet_anything(x->position2D_new, gensym("position2D"), 2, x->pos_new);
 }
}

void mass2D_reset(t_mass2D *x)
{
  x->posX_old_2 = x->Xinit;
  x->posX_old_1 = x->Xinit;
  x->forceX=0;

  x->posY_old_2 = x->Yinit;
  x->posY_old_1 = x->Yinit;
  x->forceY=0;

  x->VX = 0;
  x->VY = 0;

  x->dX=0;
  x->dY=0;

  x->seuil=0;

  x->onoff = 1;

  SETFLOAT(&(x->pos_new[0]), x->Xinit );
  SETFLOAT(&(x->pos_new[1]), x->Yinit );

  SETFLOAT(&(x->force[0]), 0 );
  SETFLOAT(&(x->force[1]), 0 );
  SETFLOAT(&(x->force[2]), 0 );
 
  SETFLOAT(&(x->vitesse[0]), 0 );
  SETFLOAT(&(x->vitesse[1]), 0 );
  SETFLOAT(&(x->vitesse[2]), 0 );

  outlet_anything(x->vitesse_out, gensym("velocity2D"), 3, x->vitesse);
  outlet_anything(x->force_out, gensym("force2D"), 3, x->force); 
  outlet_anything(x->position2D_new, gensym("position2D"), 2, x->pos_new);
}

void mass2D_resetf(t_mass2D *x)
{
  x->dX=0;
  x->dY=0;

  x->forceX=0;
  x->forceY=0;
}

void mass2D_setXY(t_mass2D *x, t_float posX, t_float posY)
{
  x->posX_old_2 = posX;
  x->posX_old_1 = posX;
  x->forceX=0;

  x->posY_old_2 = posY;
  x->posY_old_1 = posY;
  x->forceY=0;

  SETFLOAT(&(x->pos_new[0]), posX );
  SETFLOAT(&(x->pos_new[1]), posY );

  outlet_anything(x->position2D_new, gensym("position2D"), 2, x->pos_new);
}

void mass2D_setX(t_mass2D *x, t_float posX)
{
  x->posX_old_2 = posX;
  x->posX_old_1 = posX;
  x->forceX=0;

  SETFLOAT(&(x->pos_new[0]), posX );

  outlet_anything(x->position2D_new, gensym("position2D"), 2, x->pos_new);
}

void mass2D_setY(t_mass2D *x, t_float posY)
{
  x->posY_old_2 = posY;
  x->posY_old_1 = posY;
  x->forceY=0;
  
  SETFLOAT(&(x->pos_new[1]), posY );

  outlet_anything(x->position2D_new, gensym("position2D"), 2, x->pos_new);
}

void mass2D_loadbang(t_mass2D *x)
{
  outlet_anything(x->position2D_new, gensym("position2D"), 2, x->pos_new);
}


void mass2D_set_mass2D(t_mass2D *x, t_float mass)
{
  x->mass2D=mass;
}

void mass2D_inter_ambient(t_mass2D *x, t_symbol *s, int argc, t_atom *argv)
{
	if (argc == 12) 
		// 0 : FX
		// 1 : FY
		// 2 : RndX
		// 3 : RndY
		// 4 : D2
		// 5 : rien
		// 6 : Xmin
		// 7 : Xmax
		// 8 : Ymin
		// 9 : Ymax
		// 10 : dX
		// 11 : dY
	{
		if (x->posX_old_1 > atom_getfloatarg(6, argc, argv))
		{
			if (x->posX_old_1 < atom_getfloatarg(7, argc, argv))
			{
				if (x->posY_old_1 > atom_getfloatarg(8, argc, argv))
				{
					if (x->posY_old_1 < atom_getfloatarg(9, argc, argv))
					{
						x->forceX += atom_getfloatarg(0, argc, argv);
						x->forceY += atom_getfloatarg(1, argc, argv); // constant

						x->forceX += random_bang2D(x)*atom_getfloatarg(2, argc, argv);
						x->forceY += random_bang2D(x)*atom_getfloatarg(3, argc, argv); // random
	
						x->forceX += atom_getfloatarg(4, argc, argv) * ((x->posX_old_2)-(x->posX_old_1));
						x->forceY += atom_getfloatarg(4, argc, argv) * ((x->posY_old_2)-(x->posY_old_1)); // damping

						x->dX += atom_getfloatarg(10, argc, argv);
						x->dY += atom_getfloatarg(11, argc, argv); // constant
					}
				}
			}
		}
	}
	else
	{
		error("bad ambient interraction message");
	}
}

void mass2D_inter_seg(t_mass2D *x, t_symbol *s, int argc, t_atom *argv)
{
t_float a1, b1, c1, a2, b2, c2, a3, b3, c3, tmp;
t_float posx1, posx2, posy1, posy2;
t_float profondeur;

	if (argc == 12) 
		// 0 : posx1
		// 1 : posy1
		// 2 : posx2
		// 3 : posy2
		// 4 : profondeur max
		// 5 : F CT Normal
		// 6 : F CT Tengentiel
		// 7 : K normal
		// 8 : Damp2 normal 
		// 9 : Damp2 tan
		// 10 : displacement Normal
		// 11 : d Tan

	{
		posx1 = atom_getfloatarg(0, argc, argv);
		posy1 = atom_getfloatarg(1, argc, argv);
		posx2 = atom_getfloatarg(2, argc, argv);
		posy2 = atom_getfloatarg(3, argc, argv);

		b1 = posx2 - posx1;
		a1 = -posy2 + posy1;

		if (!((a1==0) & (b1==0)))
		{

		tmp = sqrt((a1*a1)+(b1*b1));			// = longueur du vecteur pour renormalisation
		if (tmp !=0)
		{
			a1 = a1/tmp;
			b1 = b1/tmp;
		}
		else
		{
			a1 = 0;
			b1 = 0;
		}

		c1 = a1*posx1+b1*posy1;

		profondeur = ( (a1 * x->posX_old_1)  + (b1 *   x->posY_old_1) )  - c1;

		if ( ( profondeur  < 0) & (profondeur > - atom_getfloatarg(4, argc, argv)) )
			{
			a2 = b1;
			b2 = -a1;
			c2 = a2*posx1+b2*posy1;
				if (( (a2 * x->posX_old_1)  + (b2 *   x->posY_old_1) )  > c2)
				{
				a3 = a2;
				b3 = b2;
				c3 = a3*posx2+b3*posy2;
					if (( (a3 * x->posX_old_1)  + (b3 *   x->posY_old_1) )  < c3)
					{
						 tmp = atom_getfloatarg(5, argc, argv); // force ct normal
						 x->forceX += tmp * a1;
						 x->forceY += tmp * b1;

						 tmp = atom_getfloatarg(6, argc, argv); // force ct normal
						 x->forceX -= tmp * b1;
						 x->forceY -= tmp * -a1;

						 tmp = atom_getfloatarg(7, argc, argv); // force K normal
						 tmp *= profondeur;
						 x->forceX -= tmp * a1;
						 x->forceY -= tmp * b1;

						 tmp = atom_getfloatarg(8, argc, argv); // damping2 normal
						 tmp *= ( x->VX * a1 + x->VY * b1 );
						 x->forceX -= tmp * a1 ;
						 x->forceY -= tmp * b1 ;

						 tmp = atom_getfloatarg(9, argc, argv); // damping2 tangentiel
						 tmp *= ( x->VX * b1 - x->VY * a1 );
						 x->forceX -= tmp * b1 ;
						 x->forceY -= tmp * -a1 ;

						 tmp = atom_getfloatarg(10, argc, argv); // displacement normal
						 x->dX += tmp * a1 ;
						 x->dY += tmp * b1 ;

						 tmp = atom_getfloatarg(11, argc, argv); // displacement tengentiel
						 x->dX -= tmp * b1 ;
						 x->dY -= tmp * -a1 ;
					}
				}
			}
		}
	}
	else
	{
		error("bad interact_2D_segment message");
	}
}

void mass2D_inter_line(t_mass2D *x, t_symbol *s, int argc, t_atom *argv)
{
t_float a1, b1, c1, tmp;
t_float posx1, posx2, posy1, posy2;
t_float profondeur;

	if (argc == 12) 
		// 0 : posx1
		// 1 : posy1
		// 2 : posx2
		// 3 : posy2
		// 4 : profondeur max
		// 5 : F CT Normal 
		// 6 : F CT Tengentiel
		// 7 : K normal
		// 8 : Damp2 normal 
		// 9 : Damp2 tan
		// 10 : d normal
		// 11 : d tengential
	{
		posx1 = atom_getfloatarg(0, argc, argv);
		posy1 = atom_getfloatarg(1, argc, argv);
		posx2 = atom_getfloatarg(2, argc, argv);
		posy2 = atom_getfloatarg(3, argc, argv);

		b1 = posx2 - posx1;
		a1 = -posy2 + posy1;

		if (!((a1==0) & (b1==0)))
		{
		tmp = sqrt((a1*a1)+(b1*b1));			// = longueur du vecteur pour renormalisation
		a1 = a1/tmp;							// composante X de la normal
		b1 = b1/tmp;							// composante Y de la normal
		c1 = a1*posx1+b1*posy1;					// 

		profondeur = ( (a1 * x->posX_old_1)  + (b1 *   x->posY_old_1) )  - c1;
		if ( ( profondeur  < 0) & (profondeur >  - atom_getfloatarg(4, argc, argv)) )
			{
				 tmp = atom_getfloatarg(5, argc, argv); // force ct normal
				 x->forceX += tmp * a1;
				 x->forceY += tmp * b1;

				 tmp = atom_getfloatarg(6, argc, argv); // force ct tengentiel
				 x->forceX -= tmp * b1;
				 x->forceY -= tmp * -a1;

				 tmp = atom_getfloatarg(7, argc, argv); // force K normal
				 tmp *= profondeur ;
				 x->forceX -= tmp * a1;
				 x->forceY -= tmp * b1;

				 tmp = atom_getfloatarg(8, argc, argv); // damping2 normal
				 tmp *= ( x->VX * a1 + x->VY * b1 ) ;
				 x->forceX -= tmp * a1 ;
				 x->forceY -= tmp * b1 ;

				 tmp = atom_getfloatarg(9, argc, argv); // damping2 tangentiel
				 tmp *= ( x->VX * b1 - x->VY * a1 );
				 x->forceX -= tmp * b1 ;
				 x->forceY -= tmp * -a1 ;

				 tmp = atom_getfloatarg(10, argc, argv); // d normal
				 x->dX += tmp * a1;
				 x->dY += tmp * b1;

				 tmp = atom_getfloatarg(11, argc, argv); // d tangentiel
				 x->dX -= tmp * b1;
				 x->dY -= tmp * -a1;
			}
		}
	}
	else
	{
		error("bad interact_2D_line message");
	}
}

void mass2D_inter_circle(t_mass2D *x, t_symbol *s, int argc, t_atom *argv)
{
t_float posx1, posy1, Nx, Ny, distance, Dmax, tmp;
t_float deltaX_old, deltaY_old, distance_old ;
t_float fnx=0;
t_float ftx=0;

	if (argc == 20) 
		// 0 : Xcentre
		// 1 : Ycendre
		// 2 : Rmin
		// 3 : Rmax
		// 4 : F normal
		// 5 : F tangentiel
		// 6 : K normal
		// 7 : K tengentiel
		// 8 : F normal proportionel a 1/R
		// 9 : F tengentiel proportionel a 1/R
		// 10 : Damp2 normal 
		// 11 : Damp2 tan
		// 12 : deplacement N proportionel a 1/R
		// 13 : deplacement tengentiel proportionel a 1/R
		// 14 : position ancienne de l'interacteur en X
		// 15 : position abcienne de l'interacteur en Y
		// 16 : damping de liaison
		// 17 : F normal proportionel a 1/R*R
		// 18 : normal displacement
		// 19 : tengential displacement

	{
		posx1 = atom_getfloatarg(0, argc, argv);
		posy1 = atom_getfloatarg(1, argc, argv);
		Nx = (x->posX_old_1)-posx1;					// vecteur deplacement X
		Ny = (x->posY_old_1)-posy1;					// vecteur deplacement Y

		distance = sqrt((Nx * Nx)+(Ny * Ny));		// distance entre le centre de l'interaction, et le pts

		Dmax= atom_getfloatarg(3, argc, argv);		// distance max de l'interaction
		if ( (distance > atom_getfloatarg(2, argc, argv)) & (distance < Dmax) )
		{
			Nx = Nx/distance;							// composante X de la normal (normalisé)
			Ny = Ny/distance;							// composante Y de la normal.

			tmp = atom_getfloatarg(4, argc, argv); // force constante normal
//			x->forceX += tmp * Nx;
//			x->forceY += tmp * Ny;
			fnx +=tmp;
//			fny +=tmp;

			tmp = atom_getfloatarg(5, argc, argv); // force constante tengentiel
//			x->forceX += tmp * Ny;
//			x->forceY += tmp * -Nx;
			ftx +=tmp;
//			fty +=tmp;

			tmp = atom_getfloatarg(6, argc, argv); // force variable (K) normal
			tmp *= ( Dmax-distance );
//			x->forceX += tmp * Nx ;
//			x->forceY += tmp * Ny ;
			fnx +=tmp;
//			fny +=tmp;

			tmp = atom_getfloatarg(7, argc, argv); // force variable (K) tengentiel
			tmp  *= ( Dmax-distance );
//			x->forceX += tmp * Ny ;
//			x->forceY += tmp * -Nx ;
			ftx +=tmp;
//			fty +=tmp;

		    tmp = atom_getfloatarg(8, argc, argv); // force normal proportionel a 1/r
			if (distance != 0)
			{
				tmp /= distance;
//				x->forceX += tmp * Nx ;
//				x->forceY += tmp * Ny ;
				fnx +=tmp;
//				fny +=tmp;
			}

		    tmp = atom_getfloatarg(9, argc, argv); // force tengentiel proportionel a 1/r
			if (distance != 0)
			{
				tmp /= distance;
//				x->forceX -= tmp * Ny ;
//				x->forceY -= tmp * -Nx ;
				ftx -=tmp;
//				fty -=tmp;
			}

			tmp = atom_getfloatarg(10, argc, argv); // damping2 normal
			tmp *= ( x->VX * Nx + x->VY * Ny );
//			x->forceX -= tmp * Nx ;
//			x->forceY -= tmp * Ny ;
			fnx -=tmp;
//			fny -=tmp;

			tmp = atom_getfloatarg(11, argc, argv); // damping2 tangentiel
			tmp *= ( x->VX * Ny - x->VY * Nx );
//			x->forceX -= tmp * Ny ;
//			x->forceY -= tmp * -Ny ;
			ftx -=tmp;
//			fty -=tmp;

			tmp = atom_getfloatarg(12, argc, argv); // d normal
			if (distance != 0)
			{
			tmp /= distance;
			x->dX += tmp * Nx ;
			x->dY += tmp * Ny ;
			}

			tmp = atom_getfloatarg(13, argc, argv); // d tangentiel
			if (distance != 0)
			{
			tmp /= distance;

			x->dX -= tmp * Ny ;
			x->dY -= tmp * -Nx ;
			}

			tmp = atom_getfloatarg(16, argc, argv); // damping de liaison
			if (tmp!= 0)
			{
				deltaX_old = atom_getfloatarg(14, argc, argv) - x->posX_old_2;
				deltaY_old = atom_getfloatarg(15, argc, argv) - x->posY_old_2;
				distance_old = sqrt( (deltaX_old * deltaX_old) + (deltaY_old * deltaY_old));

//				x->forceX -= Nx * tmp * (distance - distance_old);
//				x->forceY -= Ny * tmp * (distance - distance_old);	

				tmp *= (distance - distance_old);
				fnx -=tmp;
//				fny -=tmp;
			}

			tmp = atom_getfloatarg(17, argc, argv); // force normal proportionel a 1/r2
			if (distance != 0)
			{
			tmp /= (distance*distance);
//		    x->forceX -= tmp * Nx;
//		    x->forceY -= tmp * Ny;
			fnx +=tmp;
//			fny +=tmp;
			}
			
			tmp = atom_getfloatarg(18, argc, argv); // deplacement constante normal
			x->dX += tmp * Nx;
			x->dY += tmp * Ny;

			tmp = atom_getfloatarg(19, argc, argv); // deplacement constante tengentiel
			x->dX -= tmp * Ny;
			x->dY -= tmp * -Nx;

		    x->forceX += fnx * Nx + ftx * Ny;  // optimisation, but does not change anything...
		    x->forceY += fnx * Ny - ftx * Nx;
		}
	}
	else
	{
		error("bad interact_2D_circle message");
	}
}

void *mass2D_new(t_symbol *s, int argc, t_atom *argv)
{
 
  t_mass2D *x = (t_mass2D *)pd_new(mass2D_class);

  x->x_sym = atom_getsymbolarg(0, argc, argv);
  x->x_state = makeseed2D();

  pd_bind(&x->x_obj.ob_pd, atom_getsymbolarg(0, argc, argv));

  x->position2D_new=outlet_new(&x->x_obj, 0);
  x->force_out=outlet_new(&x->x_obj, 0);
  x->vitesse_out=outlet_new(&x->x_obj, 0);

  x->forceX=0;
  x->forceY=0;

  if (argc >= 2)
    x->mass2D = atom_getfloatarg(1, argc, argv) ;
  else
    x->mass2D = 1;

  x->onoff = 1;

  x->VX = 0;
  x->VY = 0;

  x->dX=0;
  x->dY=0;

    if (argc >= 3)
		x->Xinit = atom_getfloatarg(2, argc, argv);
	else
		x->Xinit = 0 ;

	x->posX_old_1 = x->Xinit ;
	x->posX_old_2 = x->Xinit;
	SETFLOAT(&(x->pos_new[0]),  x->Xinit);

	if (argc >= 4)
		x->Yinit = atom_getfloatarg(3, argc, argv);
	else
		x->Yinit = 0 ;

	x->posY_old_1 = x->Yinit ;
	x->posY_old_2 = x->Yinit;
	SETFLOAT(&(x->pos_new[1]),  x->Yinit);

	  if (argc >= 5)
		x->minX = atom_getfloatarg(4, argc, argv) ;
	  else 
		x->minX = -100000;

	  if (argc >= 6)
		x->maxX = atom_getfloatarg(5, argc, argv) ;
	  else 
		x->maxX = 100000;
	
	  if (argc >= 7)
		x->minY = atom_getfloatarg(6, argc, argv) ;
	  else 
		x->minY = -100000;

	  if (argc >= 8)
		x->maxY = atom_getfloatarg(7, argc, argv) ;
	  else 
		x->maxY = 100000;

	  if (argc >= 9)
		x->seuil = atom_getfloatarg(8, argc, argv) ;
	  else 
		x->seuil = 0;

	  if (argc >= 10)
		x->damp = atom_getfloatarg(9, argc, argv) ;
	  else 
		x->damp = 0;

  return (x);
}

static void mass2D_free(t_mass2D *x)
{
    pd_unbind(&x->x_obj.ob_pd, x->x_sym);
}

void mass2D_setup(void) 
{

  mass2D_class = class_new(gensym("mass2D"),
        (t_newmethod)mass2D_new,
        (t_method)mass2D_free, sizeof(t_mass2D),
        CLASS_DEFAULT, A_GIMME, 0);

  class_addcreator((t_newmethod)mass2D_new, gensym("masse2D"), A_GIMME, 0);

  class_addbang(mass2D_class, mass2D_bang);

  class_addmethod(mass2D_class, (t_method)mass2D_force, gensym("force2D"),A_DEFFLOAT, A_DEFFLOAT, 0);
  class_addmethod(mass2D_class, (t_method)mass2D_displace, gensym("dXY"),A_DEFFLOAT, A_DEFFLOAT, 0);
  class_addmethod(mass2D_class, (t_method)mass2D_dX, gensym("dX"),A_DEFFLOAT, 0);
  class_addmethod(mass2D_class, (t_method)mass2D_dY, gensym("dY"),A_DEFFLOAT, 0);

  class_addmethod(mass2D_class, (t_method)mass2D_inter_ambient, gensym("interactor_ambient_2D"), A_GIMME, 0);
  class_addmethod(mass2D_class, (t_method)mass2D_inter_line, gensym("interactor_line_2D"), A_GIMME, 0);
  class_addmethod(mass2D_class, (t_method)mass2D_inter_seg, gensym("interactor_segment_2D"), A_GIMME, 0);
  class_addmethod(mass2D_class, (t_method)mass2D_inter_circle, gensym("interactor_circle_2D"), A_GIMME, 0);

  class_addmethod(mass2D_class, (t_method)mass2D_seuil, gensym("setT"), A_DEFFLOAT, 0);
  class_addmethod(mass2D_class, (t_method)mass2D_set_mass2D, gensym("setM"), A_DEFFLOAT, 0);
  class_addmethod(mass2D_class, (t_method)mass2D_setX, gensym("setX"), A_DEFFLOAT, 0);
  class_addmethod(mass2D_class, (t_method)mass2D_setY, gensym("setY"), A_DEFFLOAT, 0);
  class_addmethod(mass2D_class, (t_method)mass2D_minX, gensym("setXmin"), A_DEFFLOAT, 0);
  class_addmethod(mass2D_class, (t_method)mass2D_minY, gensym("setYmin"), A_DEFFLOAT, 0);
  class_addmethod(mass2D_class, (t_method)mass2D_maxX, gensym("setXmax"), A_DEFFLOAT, 0);
  class_addmethod(mass2D_class, (t_method)mass2D_maxY, gensym("setYmax"), A_DEFFLOAT, 0);
  class_addmethod(mass2D_class, (t_method)mass2D_setXY, gensym("setXY"), A_DEFFLOAT, A_DEFFLOAT, 0);
  class_addmethod(mass2D_class, (t_method)mass2D_damp, gensym("setD"), A_DEFFLOAT, 0);
  class_addmethod(mass2D_class, (t_method)mass2D_on, gensym("on"), 0);
  class_addmethod(mass2D_class, (t_method)mass2D_off, gensym("off"), 0);
  class_addmethod(mass2D_class, (t_method)mass2D_reset, gensym("reset"), 0);
  class_addmethod(mass2D_class, (t_method)mass2D_resetf, gensym("resetF"), 0);
  class_addmethod(mass2D_class, (t_method)mass2D_loadbang, gensym("loadbang"), 0);

}