/* * Copyright (C) 2000 Ichiro Fujinaga and Karl MacMillan * * Minor updates and maintenance (2008) Jamie Bullock <jamie@postlude.co.uk> * * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* This is a simple KNN object for PureData */ #include <stdio.h> #include <math.h> #include <stdlib.h> #include <errno.h> #include <string.h> #include <assert.h> #include <float.h> #include "m_pd.h" #undef N_FEATURES #define N_FEATURES 40 /* FIXME - this really needs to be in the file somehow */ #define MAX_N_CLASSES 100 /* number of instruments */ #define TRUE 1 #define FALSE 0 #define ABS(x) (((x) > 0) ? (x) : -(x)) typedef struct _nn { int index; /* where in the feature db */ float dist; /* distance from the unknown */ } NN; typedef struct _feature { unsigned long id; unsigned long symbol_id; float *feature; } FEATURE; static t_class *knn_class; /* class pointer for PD */ typedef struct _knn { t_object x_obj; /* object pointer for PD */ t_outlet *out; /* this outputs the instrument class * (a float) */ t_outlet *loo; /* this is used for debugging - it outputs a * feature vec */ FEATURE *feature_db; /* the database of features */ FEATURE unknown; int db_size; /* size of the features db */ float mean[N_FEATURES]; /* for normalization */ float stdev[N_FEATURES]; /* for normalization */ int k; /* number of k to use */ NN *knn; /* array of nearest neighbors of length k */ float wt[N_FEATURES]; /* the feature weight vector */ int normalize; /* flag for normalization */ int learn_mode; /* flag for learn (i.e. add) mode */ int learn_symbol_id; /* the symbol id to add if in learn mode */ } t_knn; static void *knn_new(t_floatarg f); static int find_nn(t_knn * x, FEATURE * unknown, FEATURE * database, int size, float *weights, int k); static NN *k_nn_new(int k); static int majority(t_knn * x); static float k_nn(t_knn * x, int candidate, float dist); static float calc_dist(FEATURE * unknown, FEATURE * known, float *weights, float min_dist); static void get_timbre_features(t_knn * x, char *fname); static void normalize_database(t_knn * x, FEATURE * Features, int size); static void normalize(t_knn * x, FEATURE * f); static void add_feature(t_knn * x, float *features, int id); static void *knn_new(t_floatarg f) { int i; t_knn *x = (t_knn *) pd_new(knn_class); x->out = outlet_new(&x->x_obj, &s_float); x->loo = outlet_new(&x->x_obj, gensym("list")); /* create the NN for the correct size of k */ if (f == 0) x->k = 1; /* default */ else x->k = (int) f; x->knn = k_nn_new(x->k); /* create space for the unknown feature */ x->unknown.feature = (float *) calloc(sizeof(float), N_FEATURES); x->db_size = 0; x->feature_db = NULL; x->normalize = FALSE; x->learn_mode = FALSE; for (i = 0; i < N_FEATURES; i++) { x->wt[i] = 1; x->mean[i] = 0; x->stdev[i] = 1; } return (x); } static void knn_free(t_knn * x) { free(x->knn); free(x->feature_db); } static void knn_list(t_knn * x, t_symbol * s, int argc, t_atom * argv) { int i; int answer; int id; int add; t_atom *a; float f[N_FEATURES]; // Is this still used? 00/12/04 IF /* read in the features from the PD list */ for (i = 0, a = argv; i < argc; i++, a++) { if (a->a_type == A_FLOAT) f[i] = x->unknown.feature[i] = a->a_w.w_float; else { f[i] = x->unknown.feature[i] = 0; post("KNN: error - wrong type for list elem %d %d", i, a->a_w.w_float); if (isinf(x->unknown.feature[i])) f[i] = x->unknown.feature[i] = 0; } } if (x->learn_mode == TRUE) { add_feature(x, x->unknown.feature, x->learn_symbol_id); } else if (x->feature_db != NULL) { post("Looking for answer"); if (x->normalize == TRUE) normalize(x, &x->unknown); answer = find_nn(x, &x->unknown, x->feature_db, x->db_size, x->wt, 1); post("ANSWER: %d", answer); outlet_float(x->out, answer); } else post("No database loaded!"); } static void add_feature(t_knn * x, float *features, int id) { int i; if (x->feature_db == NULL) x->feature_db = (FEATURE *) calloc(sizeof(FEATURE), 1); else x->feature_db = (FEATURE *) realloc(x->feature_db, sizeof(FEATURE) * (x->db_size + 1)); assert(x->feature_db != NULL); x->feature_db[x->db_size].feature = (float *) calloc(sizeof(float), N_FEATURES); x->feature_db[x->db_size].symbol_id = id; for (i = 0; i < N_FEATURES; i++) x->feature_db[x->db_size].feature[i] = features[i]; x->db_size++; if (x->learn_mode == TRUE) post("Added entry for instrument %d - db now has %d entries.", id, x->db_size); } static void knn_loo(t_knn * x, float f) { int i; t_atom at[N_FEATURES]; if ((int) f >= 0 && (int) f <= x->db_size - 1) { for (i = 0; i < N_FEATURES; i++) { SETFLOAT(&at[i], x->feature_db[(int) f].feature[i]); } outlet_list(x->loo, 0, N_FEATURES, at); outlet_float(x->out, x->feature_db[(int) f].symbol_id); post("KNN: output instrument %d", x->feature_db[(int) f].symbol_id); } else post("Index out of range"); } static void knn_set_normal(t_knn * x, float f) { if ((int) f == FALSE) x->normalize = FALSE; else if ((int) f == TRUE) x->normalize = TRUE; post("set normalize %d", x->normalize); } static void knn_set_learn(t_knn * x, float mode, float symbol) { if ((int) mode == TRUE) { x->learn_mode = TRUE; x->learn_symbol_id = (int) symbol; post("Now in learn mode for instrument %d", (int) symbol); } else { x->learn_mode = FALSE; post("Learn mode deactivated"); } } static void knn_free_db(t_knn * x) { int i; for (i = 0; i < x->db_size; i++) { free(x->feature_db[i].feature); } free(x->feature_db); x->db_size = 0; x->feature_db = NULL; post("Database cleared"); } static void knn_save(t_knn * x, t_symbol * s) { FILE *fp; int i, j; fp = fopen(s->s_name, "w"); if (fp == NULL) { post("Error saving file %s", strerror(errno)); return; } for (i = 0; i < x->db_size; i++) { fprintf(fp, "%i", (int) x->feature_db[i].symbol_id); for (j = 0; j < N_FEATURES; j++) { fprintf(fp, " %g", x->feature_db[i].feature[j]); } fprintf(fp, "\n"); } fclose(fp); post("File saved to %s", s->s_name); } static void knn_read(t_knn * x, t_symbol * s) { if (x->feature_db != NULL) knn_free_db(x); get_timbre_features(x, s->s_name); } static void knn_read_wt(t_knn * x, t_symbol * s) { FILE *fp; int ret, count = 0; fp = fopen(s->s_name, "r"); if (fp == NULL) { post("Error reading weights %s", strerror(errno)); return; } printf("Reading weights from %s . . . ", s->s_name); while (1) { ret = fscanf(fp, "%g", &x->wt[count]); if (ret != 1) break; count++; if (count > N_FEATURES) { post("too many weights!"); return; } } fclose(fp); /* JB-070505 - close the file handle */ printf("done\n"); } void knn_setup(void) { knn_class = class_new(gensym("knn"), (t_newmethod) knn_new, (t_method) knn_free, sizeof(t_knn), 0, A_DEFFLOAT, 0); class_addmethod(knn_class, (t_method) knn_loo, gensym("loo"), A_FLOAT, 0); class_addmethod(knn_class, (t_method) knn_set_normal, gensym("normal"), A_FLOAT, 0); class_addmethod(knn_class, (t_method) knn_set_learn, gensym("learn"), A_FLOAT, A_DEFFLOAT, 0); class_addmethod(knn_class, (t_method) knn_save, gensym("save"), A_SYMBOL, 0); class_addmethod(knn_class, (t_method) knn_read, gensym("read"), A_SYMBOL, 0); class_addmethod(knn_class, (t_method) knn_free_db, gensym("clear"), 0); class_addmethod(knn_class, (t_method) knn_read_wt, gensym("readweights"), A_SYMBOL, 0); class_addlist(knn_class, knn_list); } static int find_nn(t_knn * x, FEATURE * unknown, FEATURE * database, int size, float *weights, int k) { int i, min = 1; float dist = 0, min_dist = 9e100; // A BIG number for (i = 0; i < x->k; i++) { x->knn[i].index = 0; x->knn[i].dist = 9e10; } for (i = 0; i < x->db_size; i++) { dist = calc_dist(unknown, &database[i], weights, min_dist); if (dist < min_dist) { min_dist = dist; min = i; min_dist = k_nn(x, min, min_dist); } } min = majority(x); return min; } static NN *k_nn_new(int k) { int i; NN *nn; nn = (NN *) malloc(sizeof(NN) * k); assert(nn != NULL); for (i = 0; i < k; i++) { nn[i].index = -1; nn[i].dist = FLT_MAX; } return (nn); } static int majority(t_knn * x) { /* returns class number. NB: no tie breaker */ int i, max_i = 0, max = 0; int classes[MAX_N_CLASSES]; for (i = 0; i < MAX_N_CLASSES; i++) classes[i] = 0; for (i = 0; i < x->k; i++) classes[x->feature_db[x->knn[i].index].symbol_id] += 1; for (i = 0; i < MAX_N_CLASSES; i++) { if (classes[i] > max) { max = classes[i]; max_i = i; } } return (max_i); } static float k_nn(t_knn * x, int candidate, float dist) { int i, insert; for (i = 0; i < x->k; i++) { if (dist < x->knn[i].dist) break; } if (i < x->k) { insert = i; for (i = x->k - 1; i > insert; i--) x->knn[i] = x->knn[i - 1]; x->knn[insert].index = candidate; x->knn[insert].dist = dist; } return (x->knn[x->k - 1].dist); } static float calc_dist(FEATURE * unknown, FEATURE * known, float *weights, float min_dist) { float dist = 0; int i; for (i = 0; i < N_FEATURES && dist < min_dist; i++) { /* Euclidean w/o the sqrt */ dist += (weights[i]) * (unknown->feature[i] - known->feature[i]) * (unknown->feature[i] - known->feature[i]); } return ((float) dist); } static void normalize_database(t_knn * x, FEATURE * Features, int size) { int i, k; float sum, sum2; for (k = 0; k < N_FEATURES; k++) { sum = 0; sum2 = 0; for (i = 0; i < size; i++) { sum += Features[i].feature[k]; sum2 += Features[i].feature[k] * Features[i].feature[k]; } x->mean[k] = sum / size; x->stdev[k] = sqrt((size * sum2 - sum * sum) / (size * (size - 1))); if (x->stdev[k] < 0.00001) x->stdev[k] = 0.00001; if (x->normalize == TRUE) { for (i = 0; i < size; i++) Features[i].feature[k] = (Features[i].feature[k] - x->mean[k]) / x->stdev[k]; } } } static void normalize(t_knn * x, FEATURE * f) { int i; for (i = 0; i < N_FEATURES; i++) f->feature[i] = (f->feature[i] - x->mean[i]) / x->stdev[i]; } void get_timbre_features(t_knn * x, char *fname) { FILE *fp; int i, j, ret, instr = 0; float val; static char last_name[20], name[20]; float features[N_FEATURES]; int id = 0; int lastpitch = 0; printf("Reading %s . . . ", fname); fp = fopen(fname, "r"); if (fp == NULL) { post("\nError opening file - %s", strerror(errno)); return; } while (1) { ret = fscanf(fp, "%d", &instr); if (ret != 1) break; for (i = 0; i < N_FEATURES; i++) { fscanf(fp, "%g ", &features[i]); if (isinf(features[i])) features[i] = 0.0; } add_feature(x, features, instr); } printf("done.\nDatabase contains %d entries.\n", x->db_size); fclose(fp); normalize_database(x, x->feature_db, x->db_size); }