aboutsummaryrefslogtreecommitdiff
path: root/flib/src/cross~.c
blob: 2d06d9bab0853102efc45395baffefe72b4de835 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
/* flib - PD library for feature extraction 
   Copyright (C) 2005  Jamie Bullock

   This program is free software; you can redistribute it and/or
   modify it under the terms of the GNU General Public License
   as published by the Free Software Foundation; either version 2
   of the License, or (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
   */


/*Calculate the cross correlation of two signal vectors*/

/*The time domain implementation is based on code by Phil Bourke 
 * the frequency domain version is based on code by Charles Henry 
 * 
 * Specify a time delay as an argument for the time domain implemenation, for example an argument of 32 will give the correlation coefficients  for delays from -32 to 32 samples between the two input vectors
 *
 * Specify an argument of 'f' for the frequency domain implementation*/


#include "flib.h"
#define SQ(a) (a * a)

static t_class *cross_class;

typedef struct _cross {
    t_object  x_obj;
    t_float f;
    t_int delay;
    t_int is_freq_domain;
} t_cross;

static t_int *cross_perform_time_domain(t_int *w)
{
    t_sample *x = (t_sample *)(w[1]);
    t_sample *y = (t_sample *)(w[2]);
    t_sample *out = (t_sample *)(w[3]);
    t_int N = (t_int)(w[4]),
	  i, j, delay;
    t_int maxdelay = (t_int)(w[5]);
    t_float mx, my, sx, sy, sxy, denom, r;
  
   if(maxdelay > N * .5){
	maxdelay = N * .5;
	post("cross~: invalid maxdelay, must be <= blocksize/2");
   }
 
/* Calculate the mean of the two series x[], y[] */
   mx = 0;
   my = 0;   
   for (i=0;i<N;i++) {
      mx += x[i];
      my += y[i];
   }
   mx /= N;
   my /= N;

   /* Calculate the denominator */
   sx = 0;
   sy = 0;
   for (i=0;i<N;i++) {
      sx += (x[i] - mx) * (x[i] - mx);
      sy += (y[i] - my) * (y[i] - my);
   }
   denom = sqrt(sx*sy);

   /* Calculate the correlation series */
   for (delay=-maxdelay;delay<maxdelay;delay++) {
      sxy = 0;
      for (i=0;i<N;i++) {
         j = i + delay;

	/* circular correlation */
	 while (j < 0)
            j += N;
         j %= N;
         sxy += (x[i] - mx) * (y[j] - my);

     }
      r = sxy / denom;
	*out++ = r;
      /* r is the correlation coefficient at "delay" */

   }

  return (w+6);

}


t_int *cross_perform_freq_domain(t_int *w)
{
  t_cross *x = (t_cross *)(w[1]);

  t_sample *sig1 = (t_sample *)(w[2]);
  t_sample *sig2 = (t_sample *)(w[3]);
  t_sample *out  = (t_sample *)(w[4]);
  long int size  = (long int) w[5];
  long int k     = size/2;
  float *expsig1 = NULL;
  float *revsig2 = NULL;
  float temp, temp2;
  long int i=0;
  int well_defined=1;
  int qtr, thrqtr;

// The two signals are created, nonzero on 0 to N/4 and 3N/4 to N
// This will be revised

  expsig1=(float *) alloca(size*sizeof(float));
  revsig2=(float *) alloca(size*sizeof(float));
  qtr = size/4;
  thrqtr = 3*size/4;
  for (i=0; i < qtr ; i++)
  {
    expsig1[i]=sig1[i];
    revsig2[i]=0;
  }
  for (i=qtr; i < thrqtr ; i++)
  {
    expsig1[i]=sig1[i];
    revsig2[i]=sig2[size-i];
  }
  for (i=thrqtr; i < size ; i++)
  {
    expsig1[i]=sig1[i];
    revsig2[i]=0;
  }

  mayer_realfft(size, expsig1);
  mayer_realfft(size, revsig2);
  expsig1[0]*=revsig2[0];
  expsig1[k]*=revsig2[k];
  for(i=1; i < k; i++)
  {
    temp=expsig1[i];
    temp2=expsig1[size-i];
    expsig1[i]=temp*revsig2[i]-temp2*revsig2[size-i];
    expsig1[size-i]=temp*revsig2[size-i]+temp2*revsig2[i];
  }
  
  mayer_realifft(size, expsig1);
  for(i=0; i < size; i++)
  {
    out[i]=expsig1[i];
  }

  return(w+6);

}

static void cross_dsp(t_cross *x, t_signal **sp)
{
    if(!x->is_freq_domain)
	dsp_add(cross_perform_time_domain, 5,
		sp[0]->s_vec, sp[1]->s_vec, sp[2]->s_vec, sp[0]->s_n, x->delay);
    else
	dsp_add(cross_perform_freq_domain, 5, x,
		sp[0]->s_vec, sp[1]->s_vec, sp[2]->s_vec, sp[0]->s_n);
}

static void *cross_new(t_symbol *s, t_int argc, t_atom *argv)
{
    t_cross *x = (t_cross *)pd_new(cross_class);

    if(atom_getsymbol(argv) == gensym("f")){
	    x->is_freq_domain = 1;
	    post("flib: cross: Frequency domain selected");
    }
    else {
	x->delay = atom_getfloat(argv);
	post("flib: cross: Time domain selected");
    } 
    inlet_new(&x->x_obj, &x->x_obj.ob_pd, &s_signal, &s_signal);
    outlet_new(&x->x_obj, &s_signal);
    return (void *)x;
}


void cross_tilde_setup(void) {
    cross_class = class_new(gensym("cross~"),
	    (t_newmethod)cross_new,
	    0, sizeof(t_cross),
	    CLASS_DEFAULT, A_GIMME, 0);

    class_addmethod(cross_class,
	    (t_method)cross_dsp, gensym("dsp"), 0);
    CLASS_MAINSIGNALIN(cross_class, t_cross,f);
    class_sethelpsymbol(cross_class, gensym("help-flib"));
}