1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
|
/* flib - PD library for feature extraction
Copyright (C) 2005 Jamie Bullock
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
/*Outputs amplitude (in dB referenecd to a maximum of 100dB) and frequency of spectral peaks from outlets 1 and 2. A peak is defined as a bin that has a greater magnitude than either of its neighbouring bins. A peak detection threshold is given by the first argument (or right inlet as a float) as a percentage of the frame maximum, i.e. a setting of 100 finds peaks equal to the size of the highest peak, a setting of 0 will output all peaks. Default is 0*/
#include "flib.h"
#define SQ(a) (a * a)
static t_class *peak_class;
typedef struct _peak {
t_object x_obj;
t_float f, thresh, *buf;
t_int sr,M;
} t_peak;
static t_float max(t_float *array, t_int size){
register t_float t = array[0];
register t_int i;
for(i = 1; i < size; i++){
if (t < array[i])
t = array[i];
}
return t;
}
static t_int *peak_perform(t_int *w)
{
t_sample *in1 = (t_sample *)(w[1]);
t_sample *out1 = (t_float *)(w[2]);
t_sample *out2 = (t_float *)(w[3]);
t_int N = (t_int)(w[4]), M = N >> 1,n;
t_float thresh = *(t_float *)(w[5]);
t_peak *x = (t_peak *)(w[6]);
t_float width = (t_float)x->sr / (t_float)N,y,y2,y3,p,t;
x->M = M;
x->buf = getbytes(M * sizeof(t_float));
for(n = 0; n < M; n++){
if ((t = in1[n] * 100000) >= 1) /* ensure we never take log10(0) */
x->buf[n] = t;
else
x->buf[n] = 1;
}
if(thresh < 0 || thresh > 100)
thresh = 0;
else
thresh *= .01 * max(&x->buf[0],M);
out1[0] = 0;
out2[0] = 0;
for(n = 1; n < M; n++){
if(x->buf[n] >= thresh){
if(x->buf[n] > x->buf[n - 1] && x->buf[n] > x->buf[n + 1]){
out1[n] = width * (n + (p = .5 * (y = 20 * log10(x->buf[n-1]) - (y3 = 20 * log10(x->buf[n+1]))) / (20 * log10(x->buf[n - 1]) - 2 * (y2 = 20 * log10(x->buf[n])) + 20 * log10(x->buf[n + 1]))));
out2[n] = y2 - .25 * (y - y3) * p;
}
else{
out1[n] = 0;
out2[n] = 0;
}
}
else{
out1[n] = 0;
out2[n] = 0;
}
}
for (;n < N; n++){
out1[n] = 0;
out2[n] = 0;
}
return (w+7);
}
static void peak_dsp(t_peak *x, t_signal **sp)
{
dsp_add(peak_perform, 6, sp[0]->s_vec, sp[1]->s_vec, sp[2]->s_vec, sp[0]->s_n,&x->thresh, x);
}
static void *peak_new(t_symbol *s, t_int argc, t_atom *argv)
{
t_peak *x = (t_peak *)pd_new(peak_class);
floatinlet_new(&x->x_obj, &x->thresh);
outlet_new(&x->x_obj, &s_signal);
outlet_new(&x->x_obj, &s_signal);
x->sr = (t_int)sys_getsr();
x->thresh = atom_getfloatarg(0,argc, argv);
return (void *)x;
}
static void peak_free(t_peak *x){
freebytes(x->buf, sizeof(t_float) * x->M);
}
void peak_tilde_setup(void) {
peak_class = class_new(gensym("peak~"),
(t_newmethod)peak_new,
(t_method)peak_free, sizeof(t_peak),
CLASS_DEFAULT, A_GIMME, 0);
class_addmethod(peak_class, (t_method)peak_dsp, gensym("dsp"), 0);
CLASS_MAINSIGNALIN(peak_class, t_peak,f);
class_sethelpsymbol(peak_class, gensym("help-flib"));
}
|