
RRADical Pd

Author: Frank Barknecht <fbar@footils.org>

Abstract

RRADical Pd is a project to create a collection of Pd patches, that make Pd easier and faster to use for people
who are more comfortable with commercial software like Reason(tm) or Reaktor(tm). RRAD as an acronym
stands for “Reusable and Rapid Audio Development” or “Reusable and Rapid Application Development”, if it
includes non-audio patches, with Pd. In the design of this system, a way to save state flexibly in Pd (persistence)
had to be developed. For communication among each other the RRADical patches integrates the Open Sound
Control protocol.

What it takes to be a RRADical

RRAD as an acronym stands for “Reusable and Rapid Audio Development” or “Reusable and Rapid Application
Development”, if it includes non-audio patches, with Pd. It is spelled RRAD, but pronounced “Rradical” with
a long rolling “R”.

The goal of RRADical Pd is to create a collection of patches, that make Pd easier and faster to use for people
who are more used to software like Reason(tm) or Reaktor(tm). For that I would like to create patches, that solve
real-world problems on a higher level of abstraction than the standard Pd objects do. Where suitable these high
level abstractions should have a graphical user interface (GUI) built in. As I am focused on sound production
the currently available RRADical patches mirror my preferences and mainly deal with audio, although the basic
concepts would apply for graphics and video work using for example the Gem and PDP extensions as well.

Pre-fabricated high-level abstractions may not only make Pd easier to use for beginners, they also can spare
lot of tedious, repeating patching work. For example building a filter using the lop~ object of Pd usually
involves some way of changing the cutoff frequency of the filter. So another object, maybe a slider, will have
to be created and connected to the lop~. The typing and connecting work has to be done almost every time a
filter is used. But the connections between the filter’s cutoff control and the filter can also be done in advance
inside of a so called abstraction, that is, in a saved Pd patch file. Thanks to the Graph-On-Parent feature of
Pd the cutoff slider even can be made visible when using that abstraction in another patch. The new filter
abstraction now carries its own GUI and is immediatly ready to be used.

Of course the GUI-filter is a rather simple example (although already quite useful). But building a graphical
note sequencer with 32 sliders and 32 number boxes or even more is something, one would rather have to do
only once, and then reuse in a lot of patches.

Problems and Solutions

To build above, highly modularized system several problems have to be solved. Two key areas turned out to be
very important:

Persistence How to save the current state of a patch? How to save more than one state (state sequencing)?

Communication The various modules are building blocks for a larger application. How should they talk to
each other. (In Reason this is done by patching the back or modules with horrible looking cables. We
must do better.)

It turned out, that both tasks are possible to solve in a consistent way using a unique abstraction. But first
lets look a bit deeper at the problems at hand.

1

Persistence

Pd offers no direct way to store the current state of a patch. Here’s what Pd author Miller S. Puckette writes
about this in the Pd manual in section “2.6.2. persistence of data”:

Among the design principles of Pd is that patches should be printable, in the sense that the appear-
ance of a patch should fully determine its functionality. For this reason, if messages received by an
object change its action, since the changes aren’t reflected in the object’s appearance, they are not
saved as part of the file which specifies the patch and will be forgotten when the patch is reloaded.

(I’ll show an example of a float object changing “state” by a message in its right inlet here.)
Still, in a musician’s practice some kind of persistence turns out to be an important feature, that many Pd

beginners do miss. And as soon as patched start to use lots of graphical control objects, users will - and should
- play around with different settings until they find some combination they like. But unless a way to save this
combination for later use is found, all this is temporary and gone, as soon as the patch is closed.

There are several approaches to add persistence. Max/MSP has the preset-object, Pd provides the similar
state-object which saves the current state of (some) GUI objects inside a patch. Both objects also support
changing between several different states.

But both also have at least two problems: They only save the state of GUI objects, which might not be
everything that a user wants to save. And they don’t handle abstractions very well, which are crucial when
creating modularized patches.

Another approach is to (ab)use some of the Pd objects that can persist itself to a file, especially textfile,
qlist and table, which works better, but isn’t standardized.

A rather new candidate for state saving is Thomas Grill’s pool external. Basically it offers something, that
is standard in many programming languages: a data structure that stores key-value-pairs. This structure also
is known as hash, dictionary or map. With pool those pairs also can be stored in hierarchies and they can
be saved to or loaded from disk. The last but maybe most important feature for us is, that several pools can
be shared by giving them the same name. A pool MYPOOL in one patch will contain the same data as a pool
MYPOOL in another patch. Changes to one pool will change the data in the other as well. This allows us to
use pool MYPOOLs inside of abstractions, and still access the pool from modules outside the abstractions, for
example for saving the pool to disk.

A pool object is central to the persistence in RRADical patches, but it is hidden behind an abstracted “API”,
if one could name it that. I’ll come back to how this is done below.

Communication

Besides persistence it also is important to create a common path through which the RRADical modules will
talk to each other. Generally the modules will have to use, what Pd offers them, and that is either a direct
connection through patch cords or the indirect use of the send/receive mechanism in Pd. Patch cords are fine,
but tend to clutter the interface. Sends and receives on the other hand will have to make sure, that no name
clashes occur. A name clash is, when one target receives messages not intended for it. A patch author has to
remember all used send-names, which might be possible, if he did write the whole patch himself and kept track
of the send-names used. But this gets harder to impossible, if he uses prefabricated modules, which might use
their own senders, maybe hidden deep inside of the module.

So it is crucial, that senders in RRADical abstractions use local names only with as few exceptions as possible.
This is achieved by prepending the RRADical senders with the string “$0-”. So instead of a sender named send
volume, instead one called send $0-volume is used. $0 makes those sends local inside their own patch borders
by being replaced with a number unique to that patch. Using $0 that way is a pretty standard idiom in the Pd
world.

Still we will want to control a lot of parameters and do so not only through the GUI elements Pd offers, but
probably also through other ways, for example through hardware Midi controllers, through some kind of score
on disk, through satellite navigation receivers or whatever.

This creates a fundamental conflict:

We want borders We want to separate our abstraction so they don’t conflict with each other.

We want border crossings We want to have a way to reach their many internals and control them from the
outside.

The RRADical approach solves both requirements in that it enforces a strict border around abstractions but
drills a single hole in it: the OSC inlet. This idea is the result of a discussion on the Pd mailing list and goes
back to suggestions by Eric Skogen and Ben Bogart. Every RRADical patch has (to have) a rightmost inlet
that accepts messages formatted according to the OSC protocol. OSC stands for Open Sound Control and is

2

http://www.audionerd.com
http://www.ekran.org/ben/
http://www.cnmat.berkeley.edu/OpenSoundControl/

a network transparent system to control (audio) applications remotely and is developed at CNMAT in Berkley
by Matt Wright mainly.

The nice thing about OSC is that it can control many parameters over a single communication path (like
a network conneciton using a definite port). For this OSC uses a URL-like scheme to address parameters
organized in a tree. An example would be this message:

/synth/fm/volume 85

It sends the message “85” to the “volume” control of a “fm” module below a “synth” module. OSC allows
many parameters constructs like:

/synth/fm/basenote 52
/synth/virtualanalog/basenote 40
/synth/*/playchords m7b5 M6 7b9

This might set the base note of two synths, fm and virtualanalog and send a chord progression to be played
by both – indicated by the wildcard * – afterwards.

The OSC-inlet of every RRADical patch is intended as the border crossing: Everything the author of a
certain patch intends to be controlled from the outside can be controlled by OSC messages to the OSC-inlet.
The OSC-inlet is strongly recommended to be the rightmost inlet of an abstraction. At least all of my RRADical
patches do it this way.

Trying to remember it all: Memento

To realize the functionality requirements laid out so far I resorted to a so called Memento. “Memento” is a very
cool movie by director Christopher Nolan where - quoting IMDB:

A man, suffering from short-term memory loss, uses notes and tattoos to hunt down his wife’s killer.

Here’s a scene from “Memento”:

3

The movie’s main character Leonard has a similar problem as Pd: he cannot remember things. To deal with
his persistence problem, his inability to save data to his internal harddisk (brain) he resorts to taking a lot of
photos. These pictures act as what is called a Memento: a recording of the current state of things.

In software development Mementos are quite common as well. The computer science literature describes them
in great detail, for example in the Gang-Of-Four book “Design Patterns” [Gamma95]. To make the best use of a
Memento science recommends an approach where certain tasks are in the responsibility of certain independent
players.

The Memento itself, as we have seen, is the photo, i.e. some kind of state record. A module called the
“Originator” is responsible for creating this state and managing changes in it. In the movie, Leonard is the
Originator, he is the one taking photos of the world he is soon to forget.

The actual persistence, that could be the saving of a state to harddisk, but could just as well be an upload
to a webserver or a CVS check-in, is done by someone called the “Caretaker” in the literature. A Caretaker
could be a safe, where Leonard puts his photos, or could be a person, to whom Leonard gives his photos. In the
movie Leonard also makes “hard saves” by tattooing himself with notes he took. In that case, he is not only
the Originator of the notes, but also the Caretaker in one single person. The Caretaker only has to take care,
that those photos, the Mementos, are in a safe place and no one fiddles around with them. Btw: In the movie
some interesting problems with Caretakers, who don’t always act responsible, occur.

Memento in Pd

I developed a set of abstractions, of patches for Pd, that follow this design pattern. Memento for Pd includes a
caretaker and an originator abstraction, plus a third one called commun which is responsible for the internal
communication. commun basically is just a thin extension of originator and should be considered part of it.
There is another patch, the careGUI which I personally use instead of the caretaker directly, because it has a
simple GUI included.

Here’s how it looks:

The careGUI is very simple: select a FILE-name to save to, then clicking SAVE you can save the current
state, with RESTORE you can restore a state previously saved. After restore, the outlet of careGUI sends a
bang message to be used as you like.

Internally caretaker has a named pool object using the global pool called “RRADICAL”. The same pool
RRADICAL also is used inside the originator object. This abstraction handles all access to this pool. A user
should not read or write the contents of pool RRADICAL directly. The originator patch also handles the border
crossing through OSC messages by it’s rightmost inlet. The patch accepts two mandatory arguments: The first
on is the name under which this patch is to be stored inside the pool data. Each originator SomeName
secondarg stores it’s data in a virtual subdirectory inside the RRADICAL-pool called like its first argument -
SomeName in the example. If the SomeName starts with a slash like “/patch” , you can also access it via OSC
through the rightmost inlet of originator under the tree “/patch”

The second argument practically always will be $0. It is used to talk to those commun objects which share the
same second argument. As $0 is a value local and unique to a patch (or to an abstraction to be correct) each
originator then only can talk to communs inside the same patch and will not disturb other commun objects in
other abstractions.

The commun objects finally are where the contents of a state are read and set. They, too, accept two arguments,
the second of which was discussed before and will most of the time just be $0. The first argument will be the
key under which some value will be saved. You should use a slash as first character here as well to allow OSC
control. So an example for a usage would be commun /vol $0.
commun has one inlet and one outlet. What comes in through the inlet is send to originator who stores it

inside its Memento under the key, that is specified by the commun’s first arg. Actually originator. The outlet
of a commun will spit out the current value stored under its key inside the Memento, when originator tells it
to do so. So communs are intended to be cross-connected to some thing that can change. And example would
be a slider which can be connected as seen in the next picture:

[Gamma95] E. Gamma and R. Helm and R. Johnson and J. Vlissides: “Design Patterns: Elements of Reusable
Object-Oriented Software” Addison-Wesley 1995

4

In this patch, every change to the slider will be reflected inside the Memento. The little print button in
careGUI can be used to print the contents to the console from which Pd was started. Setting the slider will
result in something like this:

/mypatch 0 , /volume , 38

Here a comma separates key and value pairs. “mypatch” is the top-level directory. This contains a 0, which
is the default subdirectory, after that comes the key “/volume”, whose value is 38. Let’s add another slider for
pan-values:

Moving the /pan slider will let careGUI print out:

/mypatch 0 , /volume , 38
/mypatch 0 , /pan , 92

The originator can save several substates or presets by sending a substate #number message to its first
inlet. Let’s do just this and move the sliders again as seen in the next picture:

5

Now careGUI prints:

/mypatch 0 , /volume , 38
/mypatch 0 , /pan , 92
/mypatch 1 , /volume , 116
/mypatch 1 , /pan , 27

You see, the substate 0 is unaffected, the new state can have different values. Exchanging the substate
message with a setsub message will autoload the selected state and “set” the sliders to the stored values
immediately.

OSC in Memento

The whole system now already is prepared to be used over OSC. You probably already guess, how the message
looks like. Any takers? Thank you, you’re right, the messages are built as /mypatch/volume #number and
/mypatch/pan #number as shown in the next stage:

6

Sometimes it is useful to also get OSC messages out of a patch, for example to control other OSC software
through Pd. For this the OSC-outlet of originator can be used, which is the rightmost outlet of the
abstraction. It will print out every change to the current state. Connecting a print OSC debug object to it, we
get to see what’s coming out of the OSC-outlet when we move a slider:

OSC: /mypatch/pan 92
OSC: /mypatch/pan 91
OSC: /mypatch/pan 90
OSC: /mypatch/pan 89

Putting it all to RRADical use

Now that the foundation for a general preset and communication system are set, it is possible to build real
patches with it that have two main characteristics:

Rapidity Ready-to-use high-level abstraction can save a lot of time when building larger patches. Clear com-
munication paths will let you think faster and more about the really important things.

Reusability Don’t reinvent the wheel all the time. Reuse patches like instruments for more than one piece by
just exchanging the Caretaker-file used.

I already developed a growing number of patches that follow the RRADical paradigm, among these are a com-
plex pattern sequencer, some synths and effects and more. All those are available in the Pure data CVS, which
currently lives at pure-data.sourceforge.net in the directory “abstractions/rradical”. The RRADical collection
comes with a template file, called rrad.tpl.pd that makes deploying new RRADical patches easier and lets
developers concentrate on the algorithm instead of bookkeeping. Some utilities help with creating the sometimes
needed many commun-objects. Several usecases show example applications of the provided abstractions.

Much, but not all is well yet

Developing patches using the Memento system and the design guidelines presented has made quite an impact
on how my patches are designed. Before Memento quite a bit of my patches’ content dealed with saving state
in various, crude and non-unified ways. I even tried to avoid saving states at all because it always seemed to be
too complicated to bother with it. This limited my patches to being used in improvisational pieces without the
possibility to prepare parts of a musical story in advance and to “design” those pieces. It was like being forced
to write a book without having access to a sheet of paper (or a harddisk nowadays). This has change: having
“paper” in great supply now has made it possible to “write” pieces of art, to “remember” what was good and
what rather should not be repeated, to really “work” on a certain project over a longer time.

RRADical patches also have proven to be useful tools in teaching Pure Data, which is important as usage
of Pd in workshops and at universities is growing – also thanks to its availability as Free Software. RRADical
patches directly can be used by novices as they are created just like any other patch, but they already provide
sound creation and GUI elements that the students can use immediatly to create more satisfactory sounds
that the sine waves used as standard examples in basic Pd tutorials. With a grown proficiency the students
later can dive into the internals of a RRADical patch to see what’s inside and how it was done. This allows
a new top-down approach in teaching Pd which is a great complement (or even alternative) to the traditional,
bottom-up way.

Still the patches suffer from a known technical problem of Pd. Several of the RRADical patches make heavy
use of graphical modules like sliders or number boxes, and they create a rather high number of messages to be
send inside of Pd. The message count is alleviated a bit by using OSC, but the graphical load is so high, that
Pd’s audio computation can be disturbed, if too many GUI modules need updating at the same time. This can
lead to dropouts and clicks in the audio stream, which is of course not acceptable.

The problem is due to the non-sufficient decoupling of audio and graphics rsp. message computations in Pd,
a technical issue that is known, but a solution to my knowledge could require a lot of changes to Pd’s core
system. Several developers already are working on this problem, though.

The consistent usage of OSC throughout the RRADical patches created another interesting possibility, that of
collaboration. As every RRADcial patch not only can be controlled through OSC, but also can control another
patch of its own kind, the same patch could be used on two or more machines, and every change on one machine
would propagate to all other machines where that same patch is running. So jamming together and even the
concept of a “Pd band” is naturally build into every RRADcial patch.

7

http://pure-data.sourceforge.net

	What it takes to be a RRADical
	Problems and Solutions
	Persistence
	Communication

	Trying to remember it all: Memento
	Memento in Pd
	OSC in Memento

	Putting it all to RRADical use
	Much, but not all is well yet

