/* sIgpAck * for * pure-data * www.weiss-archiv.de */ #include "m_pd.h" #include #ifndef M_PI #define M_PI 3.14159265358979323846 #endif #ifdef _MSC_VER #pragma warning( disable : 4244 ) #pragma warning( disable : 4305 ) #endif /* ------------------------ freqshift~ ----------------------------- */ /* frequency shifter */ /* code from swh_plugins by steve harris www.plugins.org.uk */ #define SIN_T_SIZE 64 #define D_SIZE 256 #define NZEROS 200 static t_class *freqshift_tilde_class; typedef struct _freqshift_tilde { t_object x_obj; t_float x_shift;//[0 - 5000] float *x_delay; unsigned int x_dptr; t_float x_fs; t_float x_last_shift; t_float x_phi; float *x_sint; float x_f; } t_freqshift_tilde; static void *freqshift_tilde_new(t_floatarg shift) { unsigned int i; t_freqshift_tilde *x = (t_freqshift_tilde *)pd_new(freqshift_tilde_class); //x->x_shift = shift; outlet_new(&x->x_obj, gensym("signal")); outlet_new(&x->x_obj, gensym("signal")); floatinlet_new(&x->x_obj, &x->x_shift); x->x_fs = sys_getsr(); x->x_delay = (float *)getbytes(D_SIZE * sizeof(float)); x->x_sint = (float *)getbytes(SIN_T_SIZE * sizeof(float)); x->x_dptr = 0; x->x_phi = 0.0f; x->x_last_shift = 0.0f; x->x_f = 0; for (i = 0; i < SIN_T_SIZE; i++) { x->x_sint[i] = sin(2.0f * M_PI * (float)i / (float)SIN_T_SIZE); } if (shift) x->x_shift = shift; else x->x_shift = 0; return (x); } /* The non-zero taps of the Hilbert transformer */ static float xcoeffs[] = { +0.0008103736f, +0.0008457886f, +0.0009017196f, +0.0009793364f, +0.0010798341f, +0.0012044365f, +0.0013544008f, +0.0015310235f, +0.0017356466f, +0.0019696659f, +0.0022345404f, +0.0025318040f, +0.0028630784f, +0.0032300896f, +0.0036346867f, +0.0040788644f, +0.0045647903f, +0.0050948365f, +0.0056716186f, +0.0062980419f, +0.0069773575f, +0.0077132300f, +0.0085098208f, +0.0093718901f, +0.0103049226f, +0.0113152847f, +0.0124104218f, +0.0135991079f, +0.0148917649f, +0.0163008758f, +0.0178415242f, +0.0195321089f, +0.0213953037f, +0.0234593652f, +0.0257599469f, +0.0283426636f, +0.0312667947f, +0.0346107648f, +0.0384804823f, +0.0430224431f, +0.0484451086f, +0.0550553725f, +0.0633242001f, +0.0740128560f, +0.0884368322f, +0.1090816773f, +0.1412745301f, +0.1988673273f, +0.3326528346f, +0.9997730178f, -0.9997730178f, -0.3326528346f, -0.1988673273f, -0.1412745301f, -0.1090816773f, -0.0884368322f, -0.0740128560f, -0.0633242001f, -0.0550553725f, -0.0484451086f, -0.0430224431f, -0.0384804823f, -0.0346107648f, -0.0312667947f, -0.0283426636f, -0.0257599469f, -0.0234593652f, -0.0213953037f, -0.0195321089f, -0.0178415242f, -0.0163008758f, -0.0148917649f, -0.0135991079f, -0.0124104218f, -0.0113152847f, -0.0103049226f, -0.0093718901f, -0.0085098208f, -0.0077132300f, -0.0069773575f, -0.0062980419f, -0.0056716186f, -0.0050948365f, -0.0045647903f, -0.0040788644f, -0.0036346867f, -0.0032300896f, -0.0028630784f, -0.0025318040f, -0.0022345404f, -0.0019696659f, -0.0017356466f, -0.0015310235f, -0.0013544008f, -0.0012044365f, -0.0010798341f, -0.0009793364f, -0.0009017196f, -0.0008457886f, -0.0008103736f, }; static float f_clamp(float x, float a, float b) { const float x1 = fabs(x - a); const float x2 = fabs(x - b); x = x1 + a + b; x -= x2; x *= 0.5; return x; } static int f_round(t_float f) { #if PD_FLOAT_PRECISION == 64 return (int)lround(f); #else return (int)lroundf(f); #endif } // this relies on type-punning, which is not allowed in C99 or 64-bit #if 0 // Round float to int using IEEE int* hack static int f_round(float f) { f += (3<<22); return *((int*)&f) - 0x4b400000; } #endif // Cubic interpolation function static float cube_interp(const float fr, const float inm1, const float in, const float inp1, const float inp2) { return in + 0.5f * fr * (inp1 - inm1 + fr * (4.0f * inp1 + 2.0f * inm1 - 5.0f * in - inp2 + fr * (3.0f * (in - inp1) - inm1 + inp2))); } static t_int *freqshift_tilde_perform(t_int *w) { t_freqshift_tilde *x = (t_freqshift_tilde *)(w[1]); t_float *in = (t_float *)(w[2]); t_float *out1 = (t_float *)(w[3]); t_float *out2 = (t_float *)(w[4]); int n = (int)(w[5]); float f, hilb, rm1, rm2, frac_p; float shift_i = x->x_last_shift; float sample_count = sys_getblksize(); unsigned int i; int int_p; const float shift_c = f_clamp(x->x_shift, 0.0f, 10000.0f); const float shift_inc = (shift_c - x->x_last_shift) / (float)sample_count; const float freq_fix = (float)SIN_T_SIZE / x->x_fs; while (n--) { f = *in++; x->x_delay[x->x_dptr] = f; /* Perform the Hilbert FIR convolution * (probably FFT would be faster) */ hilb = 0.0f; for (i = 0; i <= NZEROS/2; i++) { hilb += (xcoeffs[i] * x->x_delay[(x->x_dptr - i*2) & (D_SIZE - 1)]); } /* Calcuate the table positions for the sine modulator */ int_p = f_round(floor(x->x_phi)); /* Calculate ringmod1, the transformed input modulated with a shift Hz * sinewave. This creates a +180 degree sideband at source-shift Hz and * a 0 degree sindeband at source+shift Hz */ frac_p = x->x_phi - int_p; rm1 = hilb * cube_interp(frac_p, x->x_sint[int_p], x->x_sint[int_p+1], x->x_sint[int_p+2], x->x_sint[int_p+3]); /* Calcuate the table positions for the cosine modulator */ int_p = (int_p + SIN_T_SIZE / 4) & (SIN_T_SIZE - 1); /* Calculate ringmod2, the delayed input modulated with a shift Hz * cosinewave. This creates a 0 degree sideband at source+shift Hz * and a -180 degree sindeband at source-shift Hz */ rm2 = x->x_delay[(x->x_dptr - 100) & (D_SIZE - 1)] * cube_interp(frac_p, x->x_sint[int_p], x->x_sint[int_p+1], x->x_sint[int_p+2], x->x_sint[int_p+3]); /* Output the sum and differences of the ringmods. The +/-180 degree * sidebands cancel (more of less) and just leave the shifted * components */ *out1++ = (rm2 - rm1) * 0.5f; /*downshifting*/ *out2++ = (rm2 + rm1) * 0.5f; /*upshifting*/ x->x_dptr = (x->x_dptr + 1) & (D_SIZE - 1); x->x_phi += shift_i * freq_fix; while (x->x_phi > SIN_T_SIZE) { x->x_phi -= SIN_T_SIZE; } shift_i += shift_inc; } return (w+6); } static void freqshift_tilde_dsp(t_freqshift_tilde *x, t_signal **sp) { dsp_add(freqshift_tilde_perform, 5, x, sp[0]->s_vec, sp[1]->s_vec, sp[2]->s_vec, sp[0]->s_n); } static void freqshift_tilde_free(t_freqshift_tilde *x) { if(x->x_delay) freebytes(x->x_delay, D_SIZE * sizeof(float)); if(x->x_sint) freebytes(x->x_sint, SIN_T_SIZE + 4 * sizeof(float)); } void freqshift_tilde_setup(void) { freqshift_tilde_class = class_new(gensym("freqshift~"), (t_newmethod)freqshift_tilde_new, (t_method)freqshift_tilde_free, sizeof(t_freqshift_tilde), 0, A_DEFFLOAT, 0); CLASS_MAINSIGNALIN(freqshift_tilde_class, t_freqshift_tilde, x_f); class_addmethod(freqshift_tilde_class, (t_method)freqshift_tilde_dsp, gensym("dsp"), 0); }