1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
|
/* sIgpAck
* for
* pure-data
* www.weiss-archiv.de */
#include "m_pd.h"
#include <math.h>
#ifdef _MSC_VER
#pragma warning( disable : 4244 )
#pragma warning( disable : 4305 )
#define M_PI 3.14159265358979323846
#endif
/* ------------------------ freqshift~ ----------------------------- */
/* frequency shifter */
/* code from swh_plugins by steve harris www.plugins.org.uk */
#define SIN_T_SIZE 64
#define D_SIZE 256
#define NZEROS 200
static t_class *freqshift_tilde_class;
typedef struct _freqshift_tilde
{
t_object x_obj;
t_float x_shift;//[0 - 5000]
float *x_delay;
unsigned int x_dptr;
t_float x_fs;
t_float x_last_shift;
t_float x_phi;
float *x_sint;
float x_f;
} t_freqshift_tilde;
static void *freqshift_tilde_new(t_floatarg shift)
{
unsigned int i;
t_freqshift_tilde *x = (t_freqshift_tilde *)pd_new(freqshift_tilde_class);
//x->x_shift = shift;
outlet_new(&x->x_obj, gensym("signal"));
outlet_new(&x->x_obj, gensym("signal"));
floatinlet_new(&x->x_obj, &x->x_shift);
x->x_fs = sys_getsr();
x->x_delay = (float *)getbytes(D_SIZE * sizeof(float));
x->x_sint = (float *)getbytes(SIN_T_SIZE * sizeof(float));
x->x_dptr = 0;
x->x_phi = 0.0f;
x->x_last_shift = 0.0f;
x->x_f = 0;
for (i = 0; i < SIN_T_SIZE; i++) {
x->x_sint[i] = sin(2.0f * M_PI * (float)i / (float)SIN_T_SIZE);
}
if (shift) x->x_shift = shift;
else x->x_shift = 0;
return (x);
}
/* The non-zero taps of the Hilbert transformer */
static float xcoeffs[] = {
+0.0008103736f, +0.0008457886f, +0.0009017196f, +0.0009793364f,
+0.0010798341f, +0.0012044365f, +0.0013544008f, +0.0015310235f,
+0.0017356466f, +0.0019696659f, +0.0022345404f, +0.0025318040f,
+0.0028630784f, +0.0032300896f, +0.0036346867f, +0.0040788644f,
+0.0045647903f, +0.0050948365f, +0.0056716186f, +0.0062980419f,
+0.0069773575f, +0.0077132300f, +0.0085098208f, +0.0093718901f,
+0.0103049226f, +0.0113152847f, +0.0124104218f, +0.0135991079f,
+0.0148917649f, +0.0163008758f, +0.0178415242f, +0.0195321089f,
+0.0213953037f, +0.0234593652f, +0.0257599469f, +0.0283426636f,
+0.0312667947f, +0.0346107648f, +0.0384804823f, +0.0430224431f,
+0.0484451086f, +0.0550553725f, +0.0633242001f, +0.0740128560f,
+0.0884368322f, +0.1090816773f, +0.1412745301f, +0.1988673273f,
+0.3326528346f, +0.9997730178f, -0.9997730178f, -0.3326528346f,
-0.1988673273f, -0.1412745301f, -0.1090816773f, -0.0884368322f,
-0.0740128560f, -0.0633242001f, -0.0550553725f, -0.0484451086f,
-0.0430224431f, -0.0384804823f, -0.0346107648f, -0.0312667947f,
-0.0283426636f, -0.0257599469f, -0.0234593652f, -0.0213953037f,
-0.0195321089f, -0.0178415242f, -0.0163008758f, -0.0148917649f,
-0.0135991079f, -0.0124104218f, -0.0113152847f, -0.0103049226f,
-0.0093718901f, -0.0085098208f, -0.0077132300f, -0.0069773575f,
-0.0062980419f, -0.0056716186f, -0.0050948365f, -0.0045647903f,
-0.0040788644f, -0.0036346867f, -0.0032300896f, -0.0028630784f,
-0.0025318040f, -0.0022345404f, -0.0019696659f, -0.0017356466f,
-0.0015310235f, -0.0013544008f, -0.0012044365f, -0.0010798341f,
-0.0009793364f, -0.0009017196f, -0.0008457886f, -0.0008103736f,
};
static float f_clamp(float x, float a, float b)
{
const float x1 = fabs(x - a);
const float x2 = fabs(x - b);
x = x1 + a + b;
x -= x2;
x *= 0.5;
return x;
}
// Round float to int using IEEE int* hack
static int f_round(float f) {
f += (3<<22);
return *((int*)&f) - 0x4b400000;
}
// Cubic interpolation function
static float cube_interp(const float fr, const float inm1, const float
in, const float inp1, const float inp2)
{
return in + 0.5f * fr * (inp1 - inm1 +
fr * (4.0f * inp1 + 2.0f * inm1 - 5.0f * in - inp2 +
fr * (3.0f * (in - inp1) - inm1 + inp2)));
}
static t_int *freqshift_tilde_perform(t_int *w)
{
t_freqshift_tilde *x = (t_freqshift_tilde *)(w[1]);
t_float *in = (t_float *)(w[2]);
t_float *out1 = (t_float *)(w[3]);
t_float *out2 = (t_float *)(w[4]);
int n = (int)(w[5]);
float f, hilb, rm1, rm2, frac_p;
float shift_i = x->x_last_shift;
float sample_count = sys_getblksize();
unsigned int i;
int int_p;
const float shift_c = f_clamp(x->x_shift, 0.0f, 10000.0f);
const float shift_inc = (shift_c - x->x_last_shift) / (float)sample_count;
const float freq_fix = (float)SIN_T_SIZE / x->x_fs;
while (n--)
{
f = *in++;
x->x_delay[x->x_dptr] = f;
/* Perform the Hilbert FIR convolution
* (probably FFT would be faster) */
hilb = 0.0f;
for (i = 0; i <= NZEROS/2; i++) {
hilb += (xcoeffs[i] * x->x_delay[(x->x_dptr - i*2) & (D_SIZE - 1)]);
}
/* Calcuate the table positions for the sine modulator */
int_p = f_round(floor(x->x_phi));
/* Calculate ringmod1, the transformed input modulated with a shift Hz
* sinewave. This creates a +180 degree sideband at source-shift Hz and
* a 0 degree sindeband at source+shift Hz */
frac_p = x->x_phi - int_p;
rm1 = hilb * cube_interp(frac_p, x->x_sint[int_p], x->x_sint[int_p+1],
x->x_sint[int_p+2], x->x_sint[int_p+3]);
/* Calcuate the table positions for the cosine modulator */
int_p = (int_p + SIN_T_SIZE / 4) & (SIN_T_SIZE - 1);
/* Calculate ringmod2, the delayed input modulated with a shift Hz
* cosinewave. This creates a 0 degree sideband at source+shift Hz
* and a -180 degree sindeband at source-shift Hz */
rm2 = x->x_delay[(x->x_dptr - 100) & (D_SIZE - 1)] * cube_interp(frac_p,
x->x_sint[int_p], x->x_sint[int_p+1], x->x_sint[int_p+2], x->x_sint[int_p+3]);
/* Output the sum and differences of the ringmods. The +/-180 degree
* sidebands cancel (more of less) and just leave the shifted
* components */
*out1++ = (rm2 - rm1) * 0.5f; /*downshifting*/
*out2++ = (rm2 + rm1) * 0.5f; /*upshifting*/
x->x_dptr = (x->x_dptr + 1) & (D_SIZE - 1);
x->x_phi += shift_i * freq_fix;
while (x->x_phi > SIN_T_SIZE) {
x->x_phi -= SIN_T_SIZE;
}
shift_i += shift_inc;
}
return (w+6);
}
static void freqshift_tilde_dsp(t_freqshift_tilde *x, t_signal **sp)
{
dsp_add(freqshift_tilde_perform, 5, x, sp[0]->s_vec, sp[1]->s_vec, sp[2]->s_vec, sp[0]->s_n);
}
static void freqshift_tilde_free(t_freqshift_tilde *x)
{
if(x->x_delay)
freebytes(x->x_delay, D_SIZE * sizeof(float));
if(x->x_sint)
freebytes(x->x_sint, SIN_T_SIZE + 4 * sizeof(float));
}
void freqshift_tilde_setup(void)
{
freqshift_tilde_class = class_new(gensym("freqshift~"), (t_newmethod)freqshift_tilde_new, (t_method)freqshift_tilde_free,
sizeof(t_freqshift_tilde), 0, A_DEFFLOAT, 0);
CLASS_MAINSIGNALIN(freqshift_tilde_class, t_freqshift_tilde, x_f);
class_addmethod(freqshift_tilde_class, (t_method)freqshift_tilde_dsp, gensym("dsp"), 0);
}
|