aboutsummaryrefslogtreecommitdiff
path: root/harmgen~.c
blob: aea31e18ff6f4f31eb9e84e5211fbb19611bccba (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
/* sIgpAck
 * for
 * pure-data
 * www.weiss-archiv.de */

#include "m_pd.h"
#include <math.h>
#ifdef _MSC_VER
#pragma warning( disable : 4244 )
#pragma warning( disable : 4305 )
#endif
#define HARMONICS 11

// ------------------------ harmgen~ -----------------------------
// harmonic generator
// code from swh_plugins by steve harris www.plugins.org.uk

static t_class *harmgen_tilde_class;

typedef struct _harmgen_tilde
{
    t_object x_obj;
	t_sample x_mag1;
	t_sample x_mag2;
	t_sample x_mag3;
	t_sample x_mag4;
	t_sample x_mag5;
	t_sample x_mag6;
	t_sample x_mag7;
	t_sample x_mag8;
	t_sample x_mag9;
	t_sample x_mag10;
	float x_itm;
	float x_otm;
	float x_f;
} t_harmgen_tilde;

static void *harmgen_tilde_new(t_floatarg mag1, t_floatarg mag2, t_floatarg mag3, t_floatarg mag4, t_floatarg mag5, t_floatarg mag6, t_floatarg mag7, t_floatarg mag8, t_floatarg mag9, t_floatarg mag10)
{
    t_harmgen_tilde *x = (t_harmgen_tilde *)pd_new(harmgen_tilde_class);
    outlet_new(&x->x_obj, gensym("signal"));
	floatinlet_new(&x->x_obj, &x->x_mag1);
	floatinlet_new(&x->x_obj, &x->x_mag2);
	floatinlet_new(&x->x_obj, &x->x_mag3);
	floatinlet_new(&x->x_obj, &x->x_mag4);
	floatinlet_new(&x->x_obj, &x->x_mag5);
	floatinlet_new(&x->x_obj, &x->x_mag6);
	floatinlet_new(&x->x_obj, &x->x_mag7);
	floatinlet_new(&x->x_obj, &x->x_mag8);
	floatinlet_new(&x->x_obj, &x->x_mag9);
	floatinlet_new(&x->x_obj, &x->x_mag10);
	x->x_f = 0;
	if(mag1) x->x_mag1 = mag1;
	else x->x_mag1 = 1;
	if(mag2) x->x_mag2 = mag2;
	else x->x_mag2 = 1;
	if(mag3) x->x_mag3 = mag3;
	else x->x_mag3 = 1;
	if(mag4) x->x_mag4 = mag4;
	else x->x_mag4 = 1;
	if(mag5) x->x_mag5 = mag5;
	else x->x_mag5 = 1;
	if(mag6) x->x_mag6 = mag6;
	else x->x_mag6 = 1;
	if(mag7) x->x_mag7 = mag7;
	else x->x_mag7 = 1;
	if(mag8) x->x_mag8 = mag8;
	else x->x_mag8 = 1;
	if(mag9) x->x_mag9 = mag9;
	else x->x_mag9 = 1;
	if(mag10) x->x_mag10 = mag10;
	else x->x_mag10 = 1;
    return (x);
}

/* Calculate Chebychev coefficents from partial magnitudes, adapted from
 * example in Num. Rec. */
void chebpc(float c[], float d[])
{
    int k, j;
    float sv, dd[HARMONICS];

    for (j = 0; j < HARMONICS; j++) {
        d[j] = dd[j] = 0.0;
    }

    d[0] = c[HARMONICS - 1];

    for (j = HARMONICS - 2; j >= 1; j--) {
        for (k = HARMONICS - j; k >= 1; k--) {
            sv = d[k];
            d[k] = 2.0 * d[k - 1] - dd[k];
            dd[k] = sv;
        }
        sv = d[0];
        d[0] = -dd[0] + c[j];
        dd[0] = sv;
    }

    for (j = HARMONICS - 1; j >= 1; j--) {
        d[j] = d[j - 1] - dd[j];
    }
    d[0] = -dd[0] + 0.5 * c[0];
}

static t_int *harmgen_tilde_perform(t_int *w)
{
	t_harmgen_tilde *x = (t_harmgen_tilde *)(w[1]);
    t_float *in1 = (t_float *)(w[2]);
    t_float *out = (t_float *)(w[3]);
    int n = (int)(w[4]);
	unsigned long i;
	float mag_fix, y, f, value;
	float mag[HARMONICS] = {0.0f, x->x_mag1, x->x_mag2, x->x_mag3, x->x_mag4, x->x_mag5, x->x_mag6,
		x->x_mag7, x->x_mag8, x->x_mag9, x->x_mag10};
	float p[HARMONICS];

	// Normalise magnitudes
	mag_fix = (fabs(x->x_mag1) + fabs(x->x_mag2) + fabs(x->x_mag3) + fabs(x->x_mag4) +
	           fabs(x->x_mag5) + fabs(x->x_mag6) + fabs(x->x_mag7) + fabs(x->x_mag8) +
	           fabs(x->x_mag9) + fabs(x->x_mag10));
	if (mag_fix < 1.0f) {
	  mag_fix = 1.0f;
	} else {
	  mag_fix = 1.0f / mag_fix;
	}
	for (i=0; i<HARMONICS; i++) {
	  mag[i] *= mag_fix;
	}

	// Calculate polynomial coefficients, using Chebychev aproximation
	chebpc(mag, p);
    while (n--)
    {
		f = *in1++;

		// Calculate the polynomial using Horner's Rule
		y = p[0] + (p[1] + (p[2] + (p[3] + (p[4] + (p[5] + (p[6] + (p[7] +
			(p[8] + (p[9] + p[10] * f) * f) * f) * f) * f) * f) * f) * f) *
			f) * f;

		// DC offset remove (odd harmonics cause DC offset)
		x->x_otm = 0.999f * x->x_otm + y - x->x_itm;
		x->x_itm = y;
		*out++ = x->x_otm;
    }
    return (w+5);
}

static void harmgen_tilde_dsp(t_harmgen_tilde *x, t_signal **sp)
{
    dsp_add(harmgen_tilde_perform, 4, x, sp[0]->s_vec, sp[1]->s_vec, sp[0]->s_n);
}

void harmgen_tilde_setup(void)
{
    harmgen_tilde_class = class_new(gensym("harmgen~"), (t_newmethod)harmgen_tilde_new, 0,
    	sizeof(t_harmgen_tilde), 0, A_GIMME, 0);
    CLASS_MAINSIGNALIN(harmgen_tilde_class, t_harmgen_tilde, x_f);
    class_addmethod(harmgen_tilde_class, (t_method)harmgen_tilde_dsp, gensym("dsp"), 0);
}