/* SuperCollider real time audio synthesis system Copyright (c) 2002 James McCartney. All rights reserved. http://www.audiosynth.com This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #ifndef _UnaryOpUGen_ #define _UnaryOpUGen_ #include "SC_Types.h" #include "SC_Constants.h" /////////////////////////////////////////////////////////////////////////////////////// inline bool sc_isnan(float x) { return (!(x >= 0.f || x <= 0.f)); } /////////////////////////////////////////////////////////////////////////////////////// // versions provided for float32 and float64 // did not supply template because do not want to instantiate for integers. // all constants explicitly cast to prevent PowerPC frsp instruction generation. /////////////////////////////////////////////////////////////////////////////////////// // this is a function for preventing pathological math operations in ugens. // can be used at the end of a block to fix any recirculating filter values. inline float32 zapgremlins(float32 x) { float32 absx = fabs(x); // very small numbers fail the first test, eliminating denormalized numbers // (zero also fails the first test, but that is OK since it returns zero.) // very large numbers fail the second test, eliminating infinities // Not-a-Numbers fail both tests and are eliminated. return (absx > (float32)1e-15 && absx < (float32)1e15) ? x : (float32)0.; } inline float32 sc_log2(float32 x) { return log(fabs(x)) * rlog2; } inline float32 sc_log10(float32 x) { return log10(fabs(x)); } inline float32 sc_midicps(float32 note) { return (float32)440. * pow((float32)2., (note - (float32)69.) * (float32)0.083333333333); } inline float32 sc_cpsmidi(float32 freq) { return sc_log2(freq * (float32)0.0022727272727) * (float32)12. + (float32)69.; } inline float32 sc_midiratio(float32 midi) { return pow((float32)2. , midi * (float32)0.083333333333); } inline float32 sc_ratiomidi(float32 ratio) { return (float32)12. * sc_log2(ratio); } inline float32 sc_octcps(float32 note) { return (float32)440. * pow((float32)2., note - (float32)4.75); } inline float32 sc_cpsoct(float32 freq) { return sc_log2(freq * (float32)0.0022727272727) + (float32)4.75; } inline float32 sc_ampdb(float32 amp) { return log10(amp) * (float32)20.; } inline float32 sc_dbamp(float32 db) { return pow((float32)10., db * (float32).05); } inline float32 sc_squared(float32 x) { return x * x; } inline float32 sc_cubed(float32 x) { return x * x * x; } inline float32 sc_sqrt(float32 x) { return x < (float32)0. ? -sqrt(-x) : sqrt(x); } inline float32 sc_hanwindow(float32 x) { if (x < (float32)0. || x > (float32)1.) return (float32)0.; return (float32)0.5 - (float32)0.5 * cos(x * twopi); } inline float32 sc_welwindow(float32 x) { if (x < (float32)0. || x > (float32)1.) return (float32)0.; return sin(x * pi); } inline float32 sc_triwindow(float32 x) { if (x < (float32)0. || x > (float32)1.) return (float32)0.; if (x < (float32)0.5) return (float32)2. * x; else return (float32)-2. * x + (float32)2.; } inline float32 sc_bitriwindow(float32 x) { float32 ax = (float32)1. - fabs(x); if (ax <= (float32)0.) return (float32)0.; return ax; } inline float32 sc_rectwindow(float32 x) { if (x < (float32)0. || x > (float32)1.) return (float32)0.; return (float32)1.; } inline float32 sc_scurve(float32 x) { if (x <= (float32)0.) return (float32)0.; if (x >= (float32)1.) return (float32)1.; return x * x * ((float32)3. - (float32)2. * x); } inline float32 sc_scurve0(float32 x) { // assumes that x is in range return x * x * ((float32)3. - (float32)2. * x); } inline float32 sc_ramp(float32 x) { if (x <= (float32)0.) return (float32)0.; if (x >= (float32)1.) return (float32)1.; return x; } inline float32 sc_distort(float32 x) { return x / ((float32)1. + fabs(x)); } inline float32 sc_softclip(float32 x) { float32 absx = fabs(x); if (absx <= (float32)0.5) return x; else return (absx - (float32)0.25) / x; } // Taylor expansion out to x**9/9! factored into multiply-adds // from Phil Burk. inline float32 taylorsin(float32 x) { // valid range from -pi/2 to +3pi/2 x = pi2 - fabs(pi2 - x); float32 x2 = x * x; return x*(x2*(x2*(x2*(x2*(1.0/362880.0) - (1.0/5040.0)) + (1.0/120.0)) - (1.0/6.0)) + 1.0); } inline float32 sc_trunc(float32 x) { // truncFloat is a number which causes a loss of precision of // the fractional part. // NOTE: this will only work if the FPU is set to round downward. // That is NOT the default rounding mode. SC sets it to this mode. float32 tmp1 = x + truncFloat; float32 tmp2 = tmp1 - truncFloat; return tmp2; } inline float32 sc_frac(float32 x) { return x - sc_trunc(x); } inline float32 sc_lg3interp(float32 x1, float32 a, float32 b, float32 c, float32 d) { // cubic lagrange interpolator float32 x0 = x1 + 1.f; float32 x2 = x1 - 1.f; float32 x3 = x1 - 2.f; float32 x03 = x0 * x3 * 0.5f; float32 x12 = x1 * x2 * 0.16666666666666667f; return x12 * (d * x0 - a * x3) + x03 * (b * x2 - c * x1); } inline float32 sc_CalcFeedback(float32 delaytime, float32 decaytime) { if (delaytime == 0.f) { return 0.f; } else if (decaytime > 0.f) { return exp(log001 * delaytime / decaytime); } else if (decaytime < 0.f) { return -exp(log001 * delaytime / -decaytime); } else { return 0.f; } } inline float32 sc_wrap1(float32 x) { if (x >= (float32) 1.) return x + (float32)-2.; if (x < (float32)-1.) return x + (float32) 2.; return x; } inline float32 sc_fold1(float32 x) { if (x >= (float32) 1.) return (float32) 2. - x; if (x < (float32)-1.) return (float32)-2. - x; return x; } /////////////////////////////////////////////////////////////////////////////////////// inline float64 zapgremlins(float64 x) { float64 absx = fabs(x); // very small numbers fail the first test, eliminating denormalized numbers // (zero also fails the first test, but that is OK since it returns zero.) // very large numbers fail the second test, eliminating infinities // Not-a-Numbers fail both tests and are eliminated. return (absx > (float64)1e-15 && absx < (float64)1e15) ? x : (float64)0.; } inline float64 sc_log2(float64 x) { return log(fabs(x)) * rlog2; } inline float64 sc_log10(float64 x) { return log10(fabs(x)); } inline float64 sc_midicps(float64 note) { return (float64)440. * pow((float64)2., (note - (float64)69.) * (float64)0.083333333333); } inline float64 sc_cpsmidi(float64 freq) { return sc_log2(freq * (float64)0.0022727272727) * (float64)12. + (float64)69.; } inline float64 sc_midiratio(float64 midi) { return pow((float64)2. , midi * (float64)0.083333333333); } inline float64 sc_ratiomidi(float64 ratio) { return (float64)12. * sc_log2(ratio); } inline float64 sc_octcps(float64 note) { return (float64)440. * pow((float64)2., note - (float64)4.75); } inline float64 sc_cpsoct(float64 freq) { return sc_log2(freq * (float64)0.0022727272727) + (float64)4.75; } inline float64 sc_ampdb(float64 amp) { return log10(amp) * (float64)20.; } inline float64 sc_dbamp(float64 db) { return pow((float64)10., db * (float64).05); } inline float64 sc_squared(float64 x) { return x * x; } inline float64 sc_cubed(float64 x) { return x * x * x; } inline float64 sc_sqrt(float64 x) { return x < (float64)0. ? -sqrt(-x) : sqrt(x); } inline float64 sc_hanwindow(float64 x) { if (x < (float64)0. || x > (float64)1.) return (float64)0.; return (float64)0.5 - (float64)0.5 * cos(x * twopi); } inline float64 sc_welwindow(float64 x) { if (x < (float64)0. || x > (float64)1.) return (float64)0.; return sin(x * pi); } inline float64 sc_triwindow(float64 x) { if (x < (float64)0. || x > (float64)1.) return (float64)0.; if (x < (float64)0.5) return (float64)2. * x; else return (float64)-2. * x + (float64)2.; } inline float64 sc_bitriwindow(float64 x) { float64 ax = fabs(x); if (ax > (float64)1.) return (float64)0.; return (float64)1. - ax; } inline float64 sc_rectwindow(float64 x) { if (x < (float64)0. || x > (float64)1.) return (float64)0.; return (float64)1.; } inline float64 sc_scurve(float64 x) { if (x <= (float64)0.) return (float64)0.; if (x >= (float64)1.) return (float64)1.; return x * x * ((float64)3. - (float64)2. * x); } inline float64 sc_scurve0(float64 x) { // assumes that x is in range return x * x * ((float64)3. - (float64)2. * x); } inline float64 sc_ramp(float64 x) { if (x <= (float64)0.) return (float64)0.; if (x >= (float64)1.) return (float64)1.; return x; } inline float64 sc_distort(float64 x) { return x / ((float64)1. + fabs(x)); } inline float64 sc_softclip(float64 x) { float64 absx = fabs(x); if (absx <= (float64)0.5) return x; else return (absx - (float64)0.25) / x; } // Taylor expansion out to x**9/9! factored into multiply-adds // from Phil Burk. inline float64 taylorsin(float64 x) { x = pi2 - fabs(pi2 - x); float64 x2 = x * x; return x*(x2*(x2*(x2*(x2*(1.0/362880.0) - (1.0/5040.0)) + (1.0/120.0)) - (1.0/6.0)) + 1.0); } inline float64 sc_trunc(float64 x) { // truncDouble is a number which causes a loss of precision of // the fractional part. // NOTE: this will only work if the FPU is set to round downward. // That is NOT the default rounding mode. SC sets it to this mode. float64 tmp1 = x + truncDouble; float64 tmp2 = tmp1 - truncDouble; return tmp2; } inline float64 sc_frac(float64 x) { return x - sc_trunc(x); } inline float64 sc_wrap1(float64 x) { if (x >= (float64) 1.) return x + (float64)-2.; if (x < (float64)-1.) return x + (float64) 2.; return x; } inline float64 sc_fold1(float64 x) { if (x >= (float64) 1.) return (float64) 2. - x; if (x < (float64)-1.) return (float64)-2. - x; return x; } inline int32 sc_grayCode(int32 x) { return x ^ (x >> 1); } /////////////////////////////////////////////////////////////////////////////////////// #endif