/* sc4pd AllpassL~ Copyright (c) 2004 Tim Blechmann. This code is derived from: SuperCollider real time audio synthesis system Copyright (c) 2002 James McCartney. All rights reserved. http://www.audiosynth.com This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. Based on: PureData by Miller Puckette and others. http://www.crca.ucsd.edu/~msp/software.html FLEXT by Thomas Grill http://www.parasitaere-kapazitaeten.net/ext SuperCollider by James McCartney http://www.audiosynth.com Coded while listening to: Rashid Ali & Frank Lowe: Duo Exchange */ #include "sc4pd.hpp" #include "DelayUnit.hpp" class AllpassL_ar : public FeedbackDelay_ar { FLEXT_HEADER(AllpassL_ar,FeedbackDelay_ar); AllpassL_ar (int argc, t_atom *argv); ~AllpassL_ar (); protected: virtual void m_signal(int n, t_sample *const *in, t_sample *const *out) { m_signal_fun(n,in,out); } virtual void m_dsp(int n, t_sample *const *in, t_sample *const *out) { delay_changed = decay_changed = false; FeedbackDelay_Reset(); } void m_delay(float f) { m_delaytime=f; delay_changed = true; } void m_decay(float f) { m_decaytime=f; decay_changed = true; } private: bool delay_changed, decay_changed; DEFSIGCALL(m_signal_fun); DEFSIGFUN(m_signal_); DEFSIGFUN(m_signal_z); FLEXT_CALLBACK_F(m_delay); FLEXT_CALLBACK_F(m_decay); }; FLEXT_LIB_DSP_V("AllpassL~",AllpassL_ar); AllpassL_ar::AllpassL_ar (int argc, t_atom *argv) { FLEXT_ADDMETHOD_(0,"delaytime",m_delay); FLEXT_ADDMETHOD_(0,"decaytime",m_decay); //parse arguments AtomList Args(argc,argv); if (Args.Count() != 3) { post("3 arguments are needed"); return; } m_maxdelaytime = sc_getfloatarg(Args,0); m_delaytime = sc_getfloatarg(Args,1); m_decaytime = sc_getfloatarg(Args,2); SETSIGFUN(m_signal_fun,SIGFUN(m_signal_z)); AddOutSignal(); } AllpassL_ar::~AllpassL_ar () { DelayUnit_Dtor(); } void AllpassL_ar::m_signal_z(int n, t_sample *const *in, t_sample *const *out) { t_sample *nin = *in; t_sample *nout = *out; float *dlybuf = m_dlybuf; long iwrphase = m_iwrphase; float dsamp = m_dsamp; float feedbk = m_feedbk; long mask = m_mask; if (delay_changed || decay_changed) { float next_dsamp = CalcDelay(m_delaytime); float dsamp_slope = CALCSLOPE(next_dsamp, dsamp); float next_feedbk = CalcFeedback(m_delaytime, m_decaytime); float feedbk_slope = CALCSLOPE(next_feedbk, feedbk); for (int i = 0; i!= n;++i) { dsamp += dsamp_slope; long idsamp = (long)dsamp; float frac = dsamp - idsamp; long irdphase = iwrphase - idsamp; long irdphaseb = irdphase - 1; float zin = ZXP(nin); if (irdphase < 0) { dlybuf[iwrphase & mask] = zin; ZXP(nout) = - feedbk * zin; //check: probably a bug = 0? } else if (irdphaseb < 0) { float d1 = dlybuf[irdphase & mask]; float value = d1 - frac * d1; float dwr = zin + feedbk * value; dlybuf[iwrphase & mask] = dwr; ZXP(nout) = value - feedbk * dwr; } else { float d1 = dlybuf[irdphase & mask]; float d2 = dlybuf[irdphaseb & mask]; float value = lininterp(frac, d1, d2); float dwr = zin + feedbk * value; dlybuf[iwrphase & mask] = dwr; ZXP(nout) = value - feedbk * dwr; } feedbk += feedbk_slope; iwrphase++; } m_feedbk = feedbk; m_dsamp = dsamp; delay_changed = decay_changed = false; } else { long idsamp = (long)dsamp; float frac = dsamp - idsamp; float zin = ZXP(nin); for (int i = 0; i!= n;++i) { long irdphase = iwrphase - idsamp; long irdphaseb = irdphase - 1; float zin = ZXP(nin); if (irdphase < 0) { dlybuf[iwrphase & mask] = zin; ZXP(nout) = - feedbk * zin; } else if (irdphaseb < 0) { float d1 = dlybuf[irdphase & mask]; float value = d1 - frac * d1; float dwr = zin + feedbk * value; dlybuf[iwrphase & mask] = dwr; ZXP(nout) = value - feedbk * dwr; } else { float d1 = dlybuf[irdphase & mask]; float d2 = dlybuf[irdphaseb & mask]; float value = lininterp(frac, d1, d2); float dwr = zin + feedbk * value; dlybuf[iwrphase & mask] = dwr; ZXP(nout) = value - feedbk * dwr; } iwrphase++; } } m_iwrphase = iwrphase; m_numoutput += n; if (m_numoutput >= m_idelaylen) { SETSIGFUN(m_signal_fun,SIGFUN(m_signal_)); } } void AllpassL_ar::m_signal_(int n, t_sample *const *in, t_sample *const *out) { t_sample *nin = *in; t_sample *nout = *out; float *dlybuf = m_dlybuf; long iwrphase = m_iwrphase; float dsamp = m_dsamp; float feedbk = m_feedbk; long mask = m_mask; if(delay_changed || decay_changed) { float next_dsamp = CalcDelay(m_delaytime); float dsamp_slope = CALCSLOPE(next_dsamp, dsamp); float next_feedbk = CalcFeedback(m_delaytime, m_decaytime); float feedbk_slope = CALCSLOPE(next_feedbk, feedbk); for(int i=0; i!= n;++i) { dsamp += dsamp_slope; long idsamp = (long)dsamp; float frac = dsamp - idsamp; long irdphase = iwrphase - idsamp; long irdphaseb = irdphase - 1; float d1 = dlybuf[irdphase & mask]; float d2 = dlybuf[irdphaseb & mask]; float value = lininterp(frac, d1, d2); float dwr = ZXP(nin) + feedbk * value; dlybuf[iwrphase & mask] = dwr; ZXP(nout) = value - feedbk * dwr; feedbk += feedbk_slope; iwrphase++; } m_feedbk = feedbk; m_dsamp = dsamp; delay_changed = decay_changed = false; } else { long idsamp = (long)dsamp; float frac = dsamp - idsamp; for(int i=0; i!= n;++i) { long irdphase = iwrphase - idsamp; long irdphaseb = irdphase - 1; float d1 = dlybuf[irdphase & mask]; float d2 = dlybuf[irdphaseb & mask]; float value = lininterp(frac, d1, d2); float dwr = ZXP(nin) + feedbk * value; dlybuf[iwrphase & mask] = dwr; ZXP(nout) = value - feedbk * dwr; iwrphase++; } } m_iwrphase = iwrphase; } /* todo: AllpassL for control rate ? */