/* sc4pd DelayC~ Copyright (c) 2004 Tim Blechmann. This code is derived from: SuperCollider real time audio synthesis system Copyright (c) 2002 James McCartney. All rights reserved. http://www.audiosynth.com This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. Based on: PureData by Miller Puckette and others. http://www.crca.ucsd.edu/~msp/software.html FLEXT by Thomas Grill http://www.parasitaere-kapazitaeten.net/ext SuperCollider by James McCartney http://www.audiosynth.com Coded while listening to: Tom Cora: Halleluja, Anyway */ #include "sc4pd.hpp" #include "DelayUnit.hpp" class DelayC_ar : private DelayUnit_ar { FLEXT_HEADER(DelayC_ar,DelayUnit_ar); DelayC_ar (int argc, t_atom *argv); ~DelayC_ar (); protected: virtual void m_signal(int n, t_sample *const *in, t_sample *const *out) { m_signal_fun(n,in,out); } virtual void m_dsp(int n, t_sample *const *in, t_sample *const *out) { changed = false; DelayUnit_Reset(); } void m_set(float f) { m_delaytime=f; changed = true; } private: bool changed; DEFSIGCALL(m_signal_fun); DEFSIGFUN(m_signal_); DEFSIGFUN(m_signal_z); FLEXT_CALLBACK_F(m_set); }; FLEXT_LIB_DSP_V("DelayC~",DelayC_ar); DelayC_ar::DelayC_ar (int argc, t_atom *argv) { FLEXT_ADDMETHOD_(0,"delaytime",m_set); //parse arguments AtomList Args(argc,argv); if (Args.Count() != 2) { post("2 arguments are needed"); return; } m_delaytime = sc_getfloatarg(Args,0); m_maxdelaytime = sc_getfloatarg(Args,1); SETSIGFUN(m_signal_fun,SIGFUN(m_signal_z)); AddOutSignal(); } DelayC_ar::~DelayC_ar () { DelayUnit_Dtor(); } void DelayC_ar::m_signal_z(int n, t_sample *const *in, t_sample *const *out) { t_sample *nin = *in; t_sample *nout = *out; float *dlybuf = m_dlybuf; long iwrphase = m_iwrphase; float dsamp = m_dsamp; long mask = m_mask; float d0, d1, d2, d3; if (changed) { float next_dsamp = CalcDelay(m_delaytime); float dsamp_slope = CALCSLOPE(next_dsamp, dsamp); for (int i = 0; i!= n;++i) { dsamp += dsamp_slope; long idsamp = (long)dsamp; float frac = dsamp - idsamp; long irdphase1 = iwrphase - idsamp; long irdphase2 = irdphase1 - 1; long irdphase3 = irdphase1 - 2; long irdphase0 = irdphase1 + 1; dlybuf[iwrphase & mask] = ZXP(nin); if (irdphase0 < 0) { ZXP(nout) = 0.f; } else { if (irdphase1 < 0) { d1 = d2 = d3 = 0.f; d0 = dlybuf[irdphase0 & mask]; } else if (irdphase2 < 0) { d1 = d2 = d3 = 0.f; d0 = dlybuf[irdphase0 & mask]; d1 = dlybuf[irdphase1 & mask]; } else if (irdphase3 < 0) { d3 = 0.f; d0 = dlybuf[irdphase0 & mask]; d1 = dlybuf[irdphase1 & mask]; d2 = dlybuf[irdphase2 & mask]; } else { d0 = dlybuf[irdphase0 & mask]; d1 = dlybuf[irdphase1 & mask]; d2 = dlybuf[irdphase2 & mask]; d3 = dlybuf[irdphase3 & mask]; } ZXP(nout) = cubicinterp(frac, d0, d1, d2, d3); } iwrphase++; } m_dsamp = dsamp; changed = false; } else { long idsamp = (long)dsamp; float frac = dsamp - idsamp; for (int i = 0; i!= n;++i) { long irdphase1 = iwrphase - idsamp; long irdphase2 = irdphase1 - 1; long irdphase3 = irdphase1 - 2; long irdphase0 = irdphase1 + 1; dlybuf[iwrphase & mask] = ZXP(nin); if (irdphase0 < 0) { ZXP(nout) = 0.f; } else { if (irdphase1 < 0) { d1 = d2 = d3 = 0.f; d0 = dlybuf[irdphase0 & mask]; } else if (irdphase2 < 0) { d1 = d2 = d3 = 0.f; d0 = dlybuf[irdphase0 & mask]; d1 = dlybuf[irdphase1 & mask]; } else if (irdphase3 < 0) { d3 = 0.f; d0 = dlybuf[irdphase0 & mask]; d1 = dlybuf[irdphase1 & mask]; d2 = dlybuf[irdphase2 & mask]; } else { d0 = dlybuf[irdphase0 & mask]; d1 = dlybuf[irdphase1 & mask]; d2 = dlybuf[irdphase2 & mask]; d3 = dlybuf[irdphase3 & mask]; } ZXP(nout) = cubicinterp(frac, d0, d1, d2, d3); } iwrphase++; } } m_iwrphase = iwrphase; m_numoutput += n; if (m_numoutput >= m_idelaylen) { SETSIGFUN(m_signal_fun,SIGFUN(m_signal_)); } } void DelayC_ar::m_signal_(int n, t_sample *const *in, t_sample *const *out) { t_sample *nin = *in; t_sample *nout = *out; float *dlybuf = m_dlybuf; long iwrphase = m_iwrphase; float dsamp = m_dsamp; long mask = m_mask; if (changed) { float next_dsamp = CalcDelay(m_delaytime); float dsamp_slope = CALCSLOPE(next_dsamp, dsamp); for (int i = 0; i!= n;++i) { dlybuf[iwrphase & mask] = ZXP(nin); dsamp += dsamp_slope; long idsamp = (long)dsamp; float frac = dsamp - idsamp; long irdphase1 = iwrphase - idsamp; long irdphase2 = irdphase1 - 1; long irdphase3 = irdphase1 - 2; long irdphase0 = irdphase1 + 1; float d0 = dlybuf[irdphase0 & mask]; float d1 = dlybuf[irdphase1 & mask]; float d2 = dlybuf[irdphase2 & mask]; float d3 = dlybuf[irdphase3 & mask]; ZXP(nout) = cubicinterp(frac, d0, d1, d2, d3); iwrphase++; } m_dsamp = dsamp; changed = false; } else { long idsamp = (long)dsamp; float frac = dsamp - idsamp; for (int i = 0; i!= n;++i) { dlybuf[iwrphase & mask] = ZXP(nin); long irdphase1 = iwrphase - idsamp; long irdphase2 = irdphase1 - 1; long irdphase3 = irdphase1 - 2; long irdphase0 = irdphase1 + 1; float d0 = dlybuf[irdphase0 & mask]; float d1 = dlybuf[irdphase1 & mask]; float d2 = dlybuf[irdphase2 & mask]; float d3 = dlybuf[irdphase3 & mask]; ZXP(nout) = cubicinterp(frac, d0, d1, d2, d3); iwrphase++; } } m_iwrphase = iwrphase; } /* todo: DelayC for control rate ? */