/* sc4pd LFPulse, LFPulse~ Copyright (c) 2004 Tim Blechmann. This code is derived from: SuperCollider real time audio synthesis system Copyright (c) 2002 James McCartney. All rights reserved. http://www.audiosynth.com This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. Based on: PureData by Miller Puckette and others. http://www.crca.ucsd.edu/~msp/software.html FLEXT by Thomas Grill http://www.parasitaere-kapazitaeten.net/ext SuperCollider by James McCartney http://www.audiosynth.com Coded while listening to: Keith Rowe & Oren Ambarchi: Flypaper */ #include "sc4pd.hpp" /* ------------------------ LFPulse~ -------------------------------*/ class LFPulse_ar: public sc4pd_dsp { FLEXT_HEADER(LFPulse_ar,sc4pd_dsp); public: LFPulse_ar(int argc, t_atom *argv); protected: virtual void m_signal(int n, t_sample *const *in, t_sample *const *out) { m_signal_fun(n,in,out); } virtual void m_dsp(int n, t_sample *const *in, t_sample *const *out); void m_set(float f) { m_freq=f; } void m_ar() { SETSIGFUN(m_signal_fun,SIGFUN(m_signal_ar)); } void m_kr() { SETSIGFUN(m_signal_fun,SIGFUN(m_signal_kr)); } void m_width (float f) { nextDuty = f; } private: double mPhase; float mFreqMul; float m_freq; //for kr arguments float mDuty; float nextDuty; DEFSIGCALL (m_signal_fun); DEFSIGFUN (m_signal_ar); DEFSIGFUN (m_signal_kr); FLEXT_CALLBACK_F(m_set); FLEXT_CALLBACK_F(m_width); FLEXT_CALLBACK(m_ar); FLEXT_CALLBACK(m_kr); }; FLEXT_LIB_DSP_V("LFPulse~",LFPulse_ar); LFPulse_ar::LFPulse_ar(int argc, t_atom *argv) { FLEXT_ADDMETHOD_(0,"freq",m_set); FLEXT_ADDMETHOD_(0,"width",m_width); FLEXT_ADDMETHOD_(0,"ar",m_ar); FLEXT_ADDMETHOD_(0,"kr",m_kr); //parse arguments AtomList Args(argc,argv); m_freq = sc_getfloatarg(Args,0); nextDuty = sc_getfloatarg(Args,1); if(sc_ar(Args)) SETSIGFUN(m_signal_fun,SIGFUN(m_signal_ar)); else // if not given, use control rate SETSIGFUN(m_signal_fun,SIGFUN(m_signal_kr)); AddOutSignal(); } void LFPulse_ar::m_dsp(int n, t_sample *const *in, t_sample *const *out) { mFreqMul = 1 / Samplerate(); } void LFPulse_ar::m_signal_ar(int n, t_sample *const *in, t_sample *const *out) { t_sample *freq = *in; t_sample *xout = *out; float freqmul = mFreqMul; double phase = mPhase; float duty = mDuty; for (int i = 0; i!= n;++i) { float z; if (phase >= 1.f) { phase -= 1.f; duty = mDuty = nextDuty; // output at least one sample from the opposite polarity z = duty < 0.5 ? 1.f : 0.f; } else { z = phase < duty ? 1.f : 0.f; } phase += (*(freq)++) * freqmul; (*(xout)++) = z; } mPhase=phase; } void LFPulse_ar::m_signal_kr(int n, t_sample *const *in, t_sample *const *out) { t_sample *xout = *out; double phase = mPhase; float duty = mDuty; float freq = m_freq * mFreqMul; for (int i = 0; i!= n;++i) { float z; if (phase >= 1.f) { phase -= 1.f; duty = mDuty = nextDuty; // output at least one sample from the opposite polarity z = duty < 0.5 ? 1.f : 0.f; } else { z = phase < duty ? 1.f : 0.f; } phase += freq; (*(xout)++) = z; } mPhase=phase; } /* ------------------------ LFPulse ---------------------------------*/ /* todo: remove obsolete messages */ class LFPulse_kr: public flext_base { FLEXT_HEADER(LFPulse_kr,flext_base); public: LFPulse_kr(int argc, t_atom *argv); protected: void m_perform(void*); void m_set(float f) { m_freq_set = f; m_freq = f * mFreqMul; } void m_set_kr(float f) { if (f != 0) { dt = f * 0.001; mFreqMul = dt; m_freq = m_freq_set * mFreqMul; m_timer.Reset(); m_timer.Periodic(dt); } } void m_set_width(float f) { nextDuty=f; } private: double mPhase; float mFreqMul; float mDuty; float nextDuty; float m_freq; float dt; float m_freq_set; Timer m_timer; FLEXT_CALLBACK_F(m_set_kr); FLEXT_CALLBACK_F(m_set); FLEXT_CALLBACK_F(m_set_width); FLEXT_CALLBACK_T(m_perform); }; FLEXT_LIB_V("LFPulse",LFPulse_kr); LFPulse_kr::LFPulse_kr(int argc, t_atom *argv) { FLEXT_ADDMETHOD(0,m_set); FLEXT_ADDMETHOD_(0,"kr",m_set_kr); FLEXT_ADDMETHOD_(0,"width",m_set_width); FLEXT_ADDTIMER(m_timer,m_perform); AddOutFloat(); //parse arguments AtomList Args(argc,argv); m_freq_set = sc_getfloatarg(Args,0); nextDuty = sc_getfloatarg(Args,1); dt = sc_getfloatarg(Args,2) * 0.001; if (dt == 0) dt = 0.02; // 20 ms as default control rate as in line mFreqMul = dt; m_freq = m_freq_set * mFreqMul; m_timer.Periodic(dt); } void LFPulse_kr::m_perform(void*) { float z; if (mPhase >= 1.f) { mPhase -= 1.f; mDuty = nextDuty; // output at least one sample from the opposite polarity z = mDuty < 0.5 ? 1.f : 0.f; } else { z = mPhase < mDuty ? 1.f : 0.f; } mPhase += m_freq; ToOutFloat(0,z); }