/* sc4pd OnePole, OnePole~ Copyright (c) 2004 Tim Blechmann. This code is derived from: SuperCollider real time audio synthesis system Copyright (c) 2002 James McCartney. All rights reserved. http://www.audiosynth.com This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. Based on: PureData by Miller Puckette and others. http://www.crca.ucsd.edu/~msp/software.html FLEXT by Thomas Grill http://www.parasitaere-kapazitaeten.net/ext SuperCollider by James McCartney http://www.audiosynth.com Coded while listening to: Goh Lee Kwang: Internal Pleasures */ #include "sc4pd.hpp" /* ------------------------ OnePole~ -------------------------------*/ class OnePole_ar: public sc4pd_dsp { FLEXT_HEADER(OnePole_ar,sc4pd_dsp); public: OnePole_ar(int argc, t_atom *argv); protected: virtual void m_signal(int n, t_sample *const *in, t_sample *const *out) { m_signal_fun(n,in,out); } void m_set(float f) { n_b1=f; changed = true; } void m_ar() { SETSIGFUN(m_signal_fun,SIGFUN(m_signal_ar)); } void m_kr() { SETSIGFUN(m_signal_fun,SIGFUN(m_signal_kr)); } private: float m_b1, m_y1; float n_b1; bool changed; DEFSIGCALL (m_signal_fun); DEFSIGFUN (m_signal_ar); DEFSIGFUN (m_signal_kr); FLEXT_CALLBACK_F(m_set); FLEXT_CALLBACK(m_ar); FLEXT_CALLBACK(m_kr); }; FLEXT_LIB_DSP_V("OnePole~",OnePole_ar); OnePole_ar::OnePole_ar(int argc, t_atom *argv) { FLEXT_ADDMETHOD_(0,"coef",m_set); FLEXT_ADDMETHOD_(0,"ar",m_ar); FLEXT_ADDMETHOD_(0,"kr",m_kr); //parse arguments AtomList Args(argc,argv); m_b1 = sc_getfloatarg(Args,0); if(sc_ar(Args)) { SETSIGFUN(m_signal_fun,SIGFUN(m_signal_ar)); AddInSignal(); AddInSignal(); } else // if not given, use control rate SETSIGFUN(m_signal_fun,SIGFUN(m_signal_kr)); AddOutSignal(); m_y1 = 0.f; } void OnePole_ar::m_signal_ar(int n, t_sample *const *in, t_sample *const *out) { t_sample *nin = *in; t_sample *nout = *out; float *b1p = *(in+1); float y1 = m_y1; for (int i = 0; i!= n;++i) { float y0 = ZXP(nin); float b1 = ZXP(b1p); ZXP(nout) = y1 = y0 + b1 * (y1 - y0); } m_y1 = zapgremlins(y1); } void OnePole_ar::m_signal_kr(int n, t_sample *const *in, t_sample *const *out) { t_sample *nin = *in; t_sample *nout = *out; float b1 = m_b1; float y1 = m_y1; if (changed) { m_b1=n_b1; float b1_slope = CALCSLOPE(m_b1, b1); if (b1 >= 0.f && m_b1 >= 0) { for (int i = 0; i!= n;++i) { float y0 = ZXP(nin); ZXP(nout) = y1 = y0 + b1 * (y1 - y0); b1 += b1_slope; } } else if (b1 <= 0.f && m_b1 <= 0) { for (int i = 0; i!= n;++i) { float y0 = ZXP(nin); ZXP(nout) = y1 = y0 + b1 * (y1 + y0); b1 += b1_slope; } } else { for (int i = 0; i!= n;++i) { float y0 = ZXP(nin); ZXP(nout) = y1 = (1.f - fabs(b1)) * y0 + b1 * y1; b1 += b1_slope; } } changed = false; } else { if (b1 >= 0.f) { for (int i = 0; i!= n;++i) { float y0 = ZXP(nin); ZXP(nout) = y1 = y0 + b1 * (y1 - y0); } } else { for (int i = 0; i!= n;++i) { float y0 = ZXP(nin); ZXP(nout) = y1 = y0 + b1 * (y1 + y0); } } } m_y1 = zapgremlins(y1); } /* ------------------------ OnePole ---------------------------------*/ class OnePole_kr: public flext_base { FLEXT_HEADER(OnePole_kr,flext_base); public: OnePole_kr(int argc, t_atom *argv); protected: void m_perform(float f); void m_set(float f) { m_b1=f; } private: float m_b1, m_y1; FLEXT_CALLBACK_F(m_set); FLEXT_CALLBACK_F(m_perform); }; FLEXT_LIB_V("OnePole",OnePole_kr); OnePole_kr::OnePole_kr(int argc, t_atom *argv) { FLEXT_ADDMETHOD(0,m_perform); FLEXT_ADDMETHOD_(0,"set",m_set); AddOutFloat(); //parse arguments AtomList Args(argc,argv); m_b1 = sc_getfloatarg(Args,0); m_y1=0; } void OnePole_kr::m_perform(float f) { m_y1= ((1-abs(m_b1))*f)+m_b1*m_y1; ToOutFloat(0,m_y1); }