/* Copyright (c) 2004 Tim Blechmann. *For information on usage and redistribution, and for a DISCLAIMER OF ALL *WARRANTIES, see the file, "gpl.txt" in this distribution. * *This program is free software; you can redistribute it and/or *modify it under the terms of the GNU General Public License *as published by the Free Software Foundation; either version 2 *of the License, or (at your option) any later version. * *See file LICENSE for further informations on licensing terms. * *This program is distributed in the hope that it will be useful, *but WITHOUT ANY WARRANTY; without even the implied warranty of *MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *GNU General Public License for more details. * *You should have received a copy of the GNU General Public License *along with this program; if not, write to the Free Software *Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * *Based on PureData by Miller Puckette and others. * * coded while listening to: Julien Ottavi: Nervure Magnetique * */ #include "m_pd.h" #include "m_simd.h" /* ----------------------------- volctl ----------------------------- */ static t_class *volctl_class; typedef struct _volctl { t_object x_obj; float x_f; float x_h; //interpolation time float x_value; //current factor int x_ticksleft; //ticks to go float x_mspersample; //ms per sample float x_slope; //slope int x_line; } t_volctl; void *volctl_new(t_symbol *s, int argc, t_atom *argv) { if (argc > 2) post("volctl~: extra arguments ignored"); t_volctl *x = (t_volctl *)pd_new(volctl_class); inlet_new(&x->x_obj, &x->x_obj.ob_pd, gensym("float"), gensym("f1")); inlet_settip(x->x_obj.ob_inlet,gensym("factor")); x->x_value = atom_getfloatarg(0, argc, argv); t_inlet * time = floatinlet_new(&x->x_obj, &x->x_h); inlet_settip(time,gensym("interpolation_time")); x->x_h = atom_getfloatarg(1, argc, argv); x->x_mspersample = 1000.f / 44100; // assume default samplerate outlet_new(&x->x_obj, &s_signal); x->x_f = 0; return (x); } t_int *volctl_perform(t_int *w) { t_volctl * x = (t_volctl *)(w[1]); t_float *in = (t_float *)(w[2]); t_float *out = (t_float *)(w[3]); int n = (int)(w[4]); float f = x->x_value; if (x->x_ticksleft) { float x_slope = x->x_slope; if (x->x_ticksleft < n) { int remain = x->x_ticksleft; n-=remain; while (remain--) { f+=x_slope; *out++ = *in++ * f; } while (n--) { *out++ = *in++ * f; } x->x_value = f; x->x_ticksleft = 0; } else { x->x_ticksleft -=n; while (n--) { f+=x_slope; *out++ = *in++ * f; } x->x_value = f; } } else while (n--) *out++ = *in++ * f; return (w+5); } t_int *volctl_perf8(t_int *w) { t_volctl * x = (t_volctl *)(w[1]); t_float *in = (t_float *)(w[2]); t_float *out = (t_float *)(w[3]); int n = (int)(w[4]); float f = x->x_value; if (x->x_ticksleft) { float x_slope = x->x_slope; if (x->x_ticksleft < n) { int remain = x->x_ticksleft; n-=remain; while (remain--) { *out++ = *in++ * f; f+=x_slope; } while (n--) { *out++ = *in++ * f; } x->x_value = f; x->x_ticksleft = 0; } else { x->x_ticksleft -= n; while (n--) { *out++ = *in++ * f; f+=x_slope; } x->x_value = f; } } else { for (; n; n -= 8, in += 8, out += 8) { float f0 = in[0], f1 = in[1], f2 = in[2], f3 = in[3]; float f4 = in[4], f5 = in[5], f6 = in[6], f7 = in[7]; out[0] = f0 * f; out[1] = f1 * f; out[2] = f2 * f; out[3] = f3 * f; out[4] = f4 * f; out[5] = f5 * f; out[6] = f6 * f; out[7] = f7 * f; } } return (w+5); } t_int *volctl_perf_simd(t_int *w) { t_volctl * x = (t_volctl *)(w[1]); t_float *in = (t_float *)(w[2]); t_float *out = (t_float *)(w[3]); if (x->x_ticksleft) { int n = (int)(w[4]); float f = x->x_value; float x_slope = x->x_slope; if (x->x_ticksleft < n) { int remain = x->x_ticksleft; n-=remain; while (remain--) { *out++ = *in++ * f; f+=x_slope; } while (n--) { *out++ = *in++ * f; } x->x_value = f; x->x_ticksleft = 0; } else { x->x_ticksleft -= n; while (n--) { *out++ = *in++ * f; f+=x_slope; } x->x_value = f; } } else { asm( ".set T_FLOAT,4 \n" "movss (%3), %%xmm0 \n" "shufps $0, %%xmm0, %%xmm0 \n" "shrl $4, %2 \n" "volctl_loop: \n" "movaps (%0), %%xmm1 \n" "mulps %%xmm0, %%xmm1 \n" "movaps %%xmm1, (%1) \n" "movaps 4*T_FLOAT(%0), %%xmm2 \n" "mulps %%xmm0, %%xmm2 \n" "movaps %%xmm2, 4*T_FLOAT(%1) \n" "movaps 8*T_FLOAT(%0), %%xmm3 \n" "mulps %%xmm0, %%xmm3 \n" "movaps %%xmm3, 8*T_FLOAT(%1) \n" "movaps 12*T_FLOAT(%0), %%xmm4 \n" "mulps %%xmm0, %%xmm4 \n" "movaps %%xmm4, 12*T_FLOAT(%1) \n" "addl $64, %0 \n" "addl $64, %1 \n" "loop volctl_loop \n" : : "r"(in), "r"(out), "a"(w[4]),"r"(&(x->x_value)) : "%xmm0","%xmm1","%xmm2","%xmm3","%xmm4"); } return (w+5); } void volctl_set(t_volctl *x, t_float f) { x->x_ticksleft = x->x_h / x->x_mspersample; x->x_slope = (f - x->x_value) / x->x_ticksleft; } void volctl_dsp(t_volctl *x, t_signal **sp) { const int n = sp[0]->s_n; if (n&7) dsp_add(volctl_perform, 4, x, sp[0]->s_vec, sp[1]->s_vec, n); else { if(SIMD_CHECK2(n,sp[0]->s_vec,sp[1]->s_vec)) dsp_add(volctl_perf_simd, 4, x, sp[0]->s_vec, sp[1]->s_vec, n); else dsp_add(volctl_perf8, 4, x, sp[0]->s_vec, sp[1]->s_vec, n); } x->x_mspersample = 1000.f / sp[0]->s_sr; } void volctl_tilde_setup(void) { volctl_class = class_new(gensym("volctl~"), (t_newmethod)volctl_new, 0, sizeof(t_volctl), 0, A_GIMME, 0); CLASS_MAINSIGNALIN(volctl_class, t_volctl, x_f); class_addmethod(volctl_class, (t_method)volctl_dsp, gensym("dsp"), 0); class_addmethod(volctl_class, (t_method)volctl_set, gensym("f1"),A_FLOAT,0); class_settip(volctl_class,gensym("signal")); }