1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
|
//
//
// chaos~
// Copyright (C) 2004 Tim Blechmann
//
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; see the file COPYING. If not, write to
// the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
// Boston, MA 02111-1307, USA.
#include "map_base.hpp"
#include <cmath>
// circle_map map: x[n+1] = x[n] + omega - r / (2*pi) * sin (2 * pi * x [n])
//
// taken from Willi-Hans Steeb: Chaos and Fractals
class circle_map:
public map_base
{
public:
circle_map()
{
CHAOS_PRECONSTRUCTOR;
CHAOS_SYS_INIT(x, 0.4,0);
CHAOS_PAR_INIT(omega, 0.1);
CHAOS_PAR_INIT(r, 3);
CHAOS_POSTCONSTRUCTOR;
}
~circle_map()
{
}
virtual void m_step()
{
data_t x = m_data[0];
data_t omega = CHAOS_PARAMETER(omega);
data_t r = CHAOS_PARAMETER(r);
m_data[0] = x + omega - r / (2.f * M_PI) * sin (2.f * M_PI * x);
}
CHAOS_SYSVAR_FUNCS(x,0);
CHAOS_SYSPAR_FUNCS(r);
CHAOS_SYSPAR_FUNCS(omega);
};
#define CIRCLE_MAP_CALLBACKS \
MAP_CALLBACKS; \
CHAOS_SYS_CALLBACKS(omega); \
CHAOS_SYS_CALLBACKS(r); \
CHAOS_SYS_CALLBACKS(x);
#define CIRCLE_MAP_ATTRIBUTES \
MAP_ATTRIBUTES; \
CHAOS_SYS_ATTRIBUTE(omega); \
CHAOS_SYS_ATTRIBUTE(r); \
CHAOS_SYS_ATTRIBUTE(x);
|