/* rvbap.c vers 1.1 written by Ville Pulkki 1999-2003 Helsinki University of Technology and Unversity of California at Berkeley and written by Olaf Matthes 2003, 2007 Pd port by Frank Barknecht See copyright in file with name LICENSE.txt */ #include #ifdef MAXMSP #include "ext.h" /* you must include this - it contains the external object's link to max */ #define t_float float #endif #ifdef PD #include "m_pd.h" /* you must include this - it contains the external object's link to pure data */ #endif #define MAX_LS_SETS 100 // maximum number of loudspeaker sets (triplets or pairs) allowed #define MAX_LS_AMOUNT 55 // maximum amount of loudspeakers, can be increased #ifdef _WINDOWS #define sqrtf sqrt #endif #ifdef MAXMSP typedef struct vbap /* This defines the object as an entity made up of other things */ { t_object x_ob; long x_azi; // panning direction azimuth long x_ele; // panning direction elevation t_float x_dist; // sound source distance (1.0-infinity) void *x_outlet0; /* outlet creation - inlets are automatic */ void *x_outlet1; void *x_outlet2; void *x_outlet3; void *x_outlet4; t_float x_set_inv_matx[MAX_LS_SETS][9];// inverse matrice for each loudspeaker set t_float x_set_matx[MAX_LS_SETS][9]; // matrice for each loudspeaker set long x_lsset[MAX_LS_SETS][3]; // channel numbers of loudspeakers in each LS set long x_lsset_available; // have loudspeaker sets been defined with define_loudspeakers long x_lsset_amount; // amount of loudspeaker sets long x_ls_amount; // amount of loudspeakers long x_dimension; // 2 or 3 long x_spread; // speading amount of virtual source (0-100) t_float x_spread_base[3]; // used to create uniform spreading t_float x_reverb_gs[MAX_LS_SETS]; // correction value for each loudspeaker set to get equal volume } t_rvbap; #endif #ifdef PD typedef struct vbap /* This defines the object as an entity made up of other things */ { t_object x_ob; t_float x_azi; // panning direction azimuth t_float x_ele; // panning direction elevation t_float x_dist; // sound source distance (1.0-infinity) void *x_outlet0; /* outlet creation - inlets are automatic */ void *x_outlet1; void *x_outlet2; void *x_outlet3; void *x_outlet4; t_float x_set_inv_matx[MAX_LS_SETS][9];// inverse matrice for each loudspeaker set t_float x_set_matx[MAX_LS_SETS][9]; // matrice for each loudspeaker set long x_lsset[MAX_LS_SETS][3]; // channel numbers of loudspeakers in each LS set long x_lsset_available; // have loudspeaker sets been defined with define_loudspeakers long x_lsset_amount; // amount of loudspeaker sets long x_ls_amount; // amount of loudspeakers long x_dimension; // 2 or 3 t_float x_spread; // speading amount of virtual source (0-100) t_float x_spread_base[3]; // used to create uniform spreading t_float x_reverb_gs[MAX_LS_SETS]; // correction value for each loudspeaker set to get equal volume } t_rvbap; #endif // Globals static void new_spread_dir(t_rvbap *x, t_float spreaddir[3], t_float vscartdir[3], t_float spread_base[3]); static void new_spread_base(t_rvbap *x, t_float spreaddir[3], t_float vscartdir[3]); #ifdef MAXMSP static void *rvbap_class; static void rvbap_assist(t_rvbap *x, void *b, long m, long a, char *s); static void rvbap_in1(t_rvbap *x, long n); static void rvbap_in2(t_rvbap *x, long n); static void rvbap_in3(t_rvbap *x, long n); static void rvbap_in4(t_rvbap *x, long n); static void rvbap_ft1(t_rvbap *x, double n); static void rvbap_ft2(t_rvbap *x, double n); static void rvbap_ft3(t_rvbap *x, double n); static void rvbap_ft4(t_rvbap *x, double n); #endif #ifdef PD static t_class *rvbap_class; #endif static void cross_prod(t_float v1[3], t_float v2[3], t_float v3[3]); static void additive_vbap(t_float *final_gs, t_float cartdir[3], t_rvbap *x); static void rvbap_bang(t_rvbap *x); static void rvbap_matrix(t_rvbap *x, t_symbol *s, int ac, t_atom *av); static void spread_it(t_rvbap *x, t_float *final_gs); static void *rvbap_new(t_symbol *s, int ac, t_atom *av); // using A_GIMME - typed message list static void vbap(t_float g[3], long ls[3], t_rvbap *x); static void angle_to_cart(long azi, long ele, t_float res[3]); static void cart_to_angle(t_float cvec[3], t_float avec[3]); static void equal_reverb(t_rvbap *x, t_float *final_gs); /* above are the prototypes for the methods/procedures/functions you will use */ #ifdef PD void rvbap_setup(void) { rvbap_class = class_new(gensym("rvbap"), (t_newmethod)rvbap_new, 0, (short)sizeof(t_rvbap), 0, A_GIMME, 0); /* rvbap_new = creation function, A_DEFLONG = its (optional) arguement is a long (32-bit) int */ class_addbang(rvbap_class, rvbap_bang); class_addmethod(rvbap_class, (t_method)rvbap_matrix, gensym("loudspeaker-matrices"), A_GIMME, 0); } #endif #ifdef MAXMSP int main(void) { setup((t_messlist **)&rvbap_class, (method)rvbap_new, 0L, (short)sizeof(t_rvbap), 0L, A_GIMME, 0); /* rvbap_new = creation function, A_DEFLONG = its (optional) arguement is a long (32-bit) int */ addmess((method)rvbap_assist, "assist", A_CANT, 0); addbang((method)rvbap_bang); /* the procedure it uses when it gets a bang in the left inlet */ addinx((method)rvbap_in1, 1); /* the rocedure for an int in the right inlet (inlet 1) */ addinx((method)rvbap_in2, 2); /* the rocedure for an int in the right inlet (inlet 2) */ addinx((method)rvbap_in3, 3); addinx((method)rvbap_in4, 4); addftx((method)rvbap_ft1, 1); /* the rocedure for an int in the right inlet (inlet 1) */ addftx((method)rvbap_ft2, 2); /* the rocedure for an int in the right inlet (inlet 2) */ addftx((method)rvbap_ft3, 3); addftx((method)rvbap_ft4, 4); addmess((method)rvbap_matrix, "loudspeaker-matrices", A_GIMME, 0); post("rvbap v1.1, © 2003-2007 by Olaf Matthes, based on vbap by Ville Pulkki"); return 0; } static void rvbap_assist(t_rvbap *x, void *b, long m, long a, char *s) { switch(m) { case 1: // inlet switch(a) { case 0: sprintf(s, "define_loudspeakers / Bang to output actual values."); break; case 1: sprintf(s, "(int) azimuth"); break; case 2: sprintf(s, "(int) elevation"); break; case 3: sprintf(s, "(int) spreading"); break; case 4: sprintf(s, "(t_float) distance"); break; } break; case 2: // outlet switch(a) { case 0: sprintf(s, "(list) matrix~ values"); break; case 1: sprintf(s, "(int) actual azimuth"); break; case 2: sprintf(s, "(int) actual elevation"); break; case 3: sprintf(s, "(int) actual spreading"); break; case 4: sprintf(s, "(t_float) actual distance"); break; } break; } } #endif /* end MAXMSP */ static void angle_to_cart(long azi, long ele, t_float res[3]) /* converts angular coordinates to cartesian */ { t_float atorad = (2.0 * 3.141592653589793 / 360.0) ; res[0] = cos((t_float) azi * atorad) * cos((t_float) ele * atorad); res[1] = sin((t_float) azi * atorad) * cos((t_float) ele * atorad); res[2] = sin((t_float) ele * atorad); } static void cart_to_angle(t_float cvec[3], t_float avec[3]) // converts cartesian coordinates to angular { t_float tmp, tmp2, tmp3, tmp4; t_float atorad = (t_float)(2.0 * 3.141592653589793 / 360.0) ; t_float pi = (t_float)3.141592653589793; t_float power; t_float dist, atan_y_per_x, atan_x_pl_y_per_z; t_float azi, ele; if(cvec[0]==0.0) atan_y_per_x = pi / 2; else atan_y_per_x = atan(cvec[1] / cvec[0]); azi = atan_y_per_x / atorad; if(cvec[0]<0.0) azi +=180; dist = sqrt(cvec[0]*cvec[0] + cvec[1]*cvec[1]); if(cvec[2]==0.0) atan_x_pl_y_per_z = 0.0; else atan_x_pl_y_per_z = atan(cvec[2] / dist); if(dist == 0.0) if(cvec[2]<0.0) atan_x_pl_y_per_z = -pi/2.0; else atan_x_pl_y_per_z = pi/2.0; ele = atan_x_pl_y_per_z / atorad; dist = sqrt(cvec[0] * cvec[0] +cvec[1] * cvec[1] +cvec[2]*cvec[2]); avec[0]=azi; avec[1]=ele; avec[2]=dist; } static void vbap(t_float g[3], long ls[3], t_rvbap *x) { /* calculates gain factors using loudspeaker setup and given direction */ t_float power; int i,j,k, gains_modified; t_float small_g; t_float big_sm_g, gtmp[3]; long winner_set=0; t_float cartdir[3]; t_float new_cartdir[3]; t_float new_angle_dir[3]; long dim = x->x_dimension; long neg_g_am, best_neg_g_am; // transfering the azimuth angle to a decent value while(x->x_azi > 180) x->x_azi -= 360; while(x->x_azi < -179) x->x_azi += 360; // transferring the elevation to a decent value if(dim == 3){ while(x->x_ele > 180) x->x_ele -= 360; while(x->x_ele < -179) x->x_ele += 360; } else x->x_ele = 0; // go through all defined loudspeaker sets and find the set which // has all positive values. If such is not found, set with largest // minimum value is chosen. If at least one of gain factors of one LS set is negative // it means that the virtual source does not lie in that LS set. angle_to_cart(x->x_azi,x->x_ele,cartdir); big_sm_g = -100000.0; // initial value for largest minimum gain value best_neg_g_am=3; // how many negative values in this set for(i=0;ix_lsset_amount;i++){ small_g = 10000000.0; neg_g_am = 3; for(j=0;jx_set_inv_matx[i][k+j*dim]; if(gtmp[j] < small_g) small_g = gtmp[j]; if(gtmp[j]>= -0.01) neg_g_am--; } if(small_g > big_sm_g && neg_g_am <= best_neg_g_am){ big_sm_g = small_g; best_neg_g_am = neg_g_am; winner_set=i; g[0]=gtmp[0]; g[1]=gtmp[1]; ls[0]= x->x_lsset[i][0]; ls[1]= x->x_lsset[i][1]; if(dim==3){ g[2]=gtmp[2]; ls[2]= x->x_lsset[i][2]; } else { g[2]=0.0; ls[2]=0; } } } // If chosen set produced a negative value, make it zero and // calculate direction that corresponds to these new // gain values. This happens when the virtual source is outside of // all loudspeaker sets. if(dim==3){ gains_modified=0; for(i=0;ix_set_matx[winner_set][0] * g[0] + x->x_set_matx[winner_set][1] * g[1] + x->x_set_matx[winner_set][2] * g[2]; new_cartdir[1] = x->x_set_matx[winner_set][3] * g[0] + x->x_set_matx[winner_set][4] * g[1] + x->x_set_matx[winner_set][5] * g[2]; new_cartdir[2] = x->x_set_matx[winner_set][6] * g[0] + x->x_set_matx[winner_set][7] * g[1] + x->x_set_matx[winner_set][8] * g[2]; cart_to_angle(new_cartdir,new_angle_dir); x->x_azi = (long) (new_angle_dir[0] + 0.5); x->x_ele = (long) (new_angle_dir[1] + 0.5); } } power=sqrt(g[0]*g[0] + g[1]*g[1] + g[2]*g[2]); g[0] /= power; g[1] /= power; g[2] /= power; } static void cross_prod(t_float v1[3], t_float v2[3], t_float v3[3]) // vector cross product { t_float length; v3[0] = (v1[1] * v2[2] ) - (v1[2] * v2[1]); v3[1] = (v1[2] * v2[0] ) - (v1[0] * v2[2]); v3[2] = (v1[0] * v2[1] ) - (v1[1] * v2[0]); length= sqrt(v3[0]*v3[0] + v3[1]*v3[1] + v3[2]*v3[2]); v3[0] /= length; v3[1] /= length; v3[2] /= length; } static void additive_vbap(t_float *final_gs, t_float cartdir[3], t_rvbap *x) // calculates gains to be added to previous gains, used in // multiple direction panning (source spreading) { t_float power; int i,j,k, gains_modified; t_float small_g; t_float big_sm_g, gtmp[3]; long winner_set; t_float new_cartdir[3]; t_float new_angle_dir[3]; long dim = x->x_dimension; long neg_g_am, best_neg_g_am; t_float g[3]; long ls[3] = { 0, 0, 0 }; big_sm_g = -100000.0; best_neg_g_am=3; for(i=0;ix_lsset_amount;i++){ small_g = 10000000.0; neg_g_am = 3; for(j=0;jx_set_inv_matx[i][k+j*dim]; if(gtmp[j] < small_g) small_g = gtmp[j]; if(gtmp[j]>= -0.01) neg_g_am--; } if(small_g > big_sm_g && neg_g_am <= best_neg_g_am){ big_sm_g = small_g; best_neg_g_am = neg_g_am; winner_set=i; g[0]=gtmp[0]; g[1]=gtmp[1]; ls[0]= x->x_lsset[i][0]; ls[1]= x->x_lsset[i][1]; if(dim==3){ g[2]=gtmp[2]; ls[2]= x->x_lsset[i][2]; } else { g[2]=0.0; ls[2]=0; } } } gains_modified=0; for(i=0;i */ if(dim==3) final_gs[ls[2]-1] += g[2]; } } static void new_spread_dir(t_rvbap *x, t_float spreaddir[3], t_float vscartdir[3], t_float spread_base[3]) // subroutine for spreading { t_float beta,m_gamma; t_float a,b; t_float pi = 3.141592653589793; t_float power; m_gamma = acos(vscartdir[0] * spread_base[0] + vscartdir[1] * spread_base[1] + vscartdir[2] * spread_base[2])/pi*180; if(fabs(m_gamma) < 1){ angle_to_cart(x->x_azi+90, 0, spread_base); m_gamma = acos(vscartdir[0] * spread_base[0] + vscartdir[1] * spread_base[1] + vscartdir[2] * spread_base[2])/pi*180; } beta = 180 - m_gamma; b=sin(x->x_spread * pi / 180) / sin(beta * pi / 180); a=sin((180- x->x_spread - beta) * pi / 180) / sin (beta * pi / 180); spreaddir[0] = a * vscartdir[0] + b * spread_base[0]; spreaddir[1] = a * vscartdir[1] + b * spread_base[1]; spreaddir[2] = a * vscartdir[2] + b * spread_base[2]; power=sqrt(spreaddir[0]*spreaddir[0] + spreaddir[1]*spreaddir[1] + spreaddir[2]*spreaddir[2]); spreaddir[0] /= power; spreaddir[1] /= power; spreaddir[2] /= power; } static void new_spread_base(t_rvbap *x, t_float spreaddir[3], t_float vscartdir[3]) // subroutine for spreading { t_float d; t_float pi = 3.141592653589793; t_float power; d = cos(x->x_spread/180*pi); x->x_spread_base[0] = spreaddir[0] - d * vscartdir[0]; x->x_spread_base[1] = spreaddir[1] - d * vscartdir[1]; x->x_spread_base[2] = spreaddir[2] - d * vscartdir[2]; power=sqrt(x->x_spread_base[0]*x->x_spread_base[0] + x->x_spread_base[1]*x->x_spread_base[1] + x->x_spread_base[2]*x->x_spread_base[2]); x->x_spread_base[0] /= power; x->x_spread_base[1] /= power; x->x_spread_base[2] /= power; } static void spread_it(t_rvbap *x, t_float *final_gs) // apply the sound signal to multiple panning directions // that causes some spreading. // See theory in paper V. Pulkki "Uniform spreading of amplitude panned // virtual sources" in WASPAA 99 { t_float vscartdir[3]; t_float spreaddir[16][3]; t_float spreadbase[16][3]; long i, spreaddirnum; t_float power; if(x->x_dimension == 3){ spreaddirnum=16; angle_to_cart(x->x_azi,x->x_ele,vscartdir); new_spread_dir(x, spreaddir[0], vscartdir, x->x_spread_base); new_spread_base(x, spreaddir[0], vscartdir); cross_prod(x->x_spread_base, vscartdir, spreadbase[1]); // four orthogonal dirs cross_prod(spreadbase[1], vscartdir, spreadbase[2]); cross_prod(spreadbase[2], vscartdir, spreadbase[3]); // four between them for(i=0;i<3;i++) spreadbase[4][i] = (x->x_spread_base[i] + spreadbase[1][i]) / 2.0; for(i=0;i<3;i++) spreadbase[5][i] = (spreadbase[1][i] + spreadbase[2][i]) / 2.0; for(i=0;i<3;i++) spreadbase[6][i] = (spreadbase[2][i] + spreadbase[3][i]) / 2.0; for(i=0;i<3;i++) spreadbase[7][i] = (spreadbase[3][i] + x->x_spread_base[i]) / 2.0; // four at half spreadangle for(i=0;i<3;i++) spreadbase[8][i] = (vscartdir[i] + x->x_spread_base[i]) / 2.0; for(i=0;i<3;i++) spreadbase[9][i] = (vscartdir[i] + spreadbase[1][i]) / 2.0; for(i=0;i<3;i++) spreadbase[10][i] = (vscartdir[i] + spreadbase[2][i]) / 2.0; for(i=0;i<3;i++) spreadbase[11][i] = (vscartdir[i] + spreadbase[3][i]) / 2.0; // four at quarter spreadangle for(i=0;i<3;i++) spreadbase[12][i] = (vscartdir[i] + spreadbase[8][i]) / 2.0; for(i=0;i<3;i++) spreadbase[13][i] = (vscartdir[i] + spreadbase[9][i]) / 2.0; for(i=0;i<3;i++) spreadbase[14][i] = (vscartdir[i] + spreadbase[10][i]) / 2.0; for(i=0;i<3;i++) spreadbase[15][i] = (vscartdir[i] + spreadbase[11][i]) / 2.0; additive_vbap(final_gs,spreaddir[0],x); for(i=1;ix_dimension == 2) { spreaddirnum=6; angle_to_cart(x->x_azi - x->x_spread, 0, spreaddir[0]); angle_to_cart(x->x_azi - x->x_spread/2, 0, spreaddir[1]); angle_to_cart(x->x_azi - x->x_spread/4, 0, spreaddir[2]); angle_to_cart(x->x_azi + x->x_spread/4, 0, spreaddir[3]); angle_to_cart(x->x_azi + x->x_spread/2, 0, spreaddir[4]); angle_to_cart(x->x_azi + x->x_spread, 0, spreaddir[5]); for(i=0;ix_spread > 70) for(i=0;ix_ls_amount;i++){ final_gs[i] += (x->x_spread - 70) / 30.0 * (x->x_spread - 70) / 30.0 * 10.0; } for(i=0,power=0.0;ix_ls_amount;i++){ power += final_gs[i] * final_gs[i]; } power = sqrt(power); for(i=0;ix_ls_amount;i++){ final_gs[i] /= power; } } static void equal_reverb(t_rvbap *x, t_float *final_gs) // calculate constant reverb gains for equally distributed // reverb levels // this is achieved by calculating gains for a sound source // that is everywhere, i.e. present in all directions { t_float vscartdir[3]; t_float spreaddir[16][3]; t_float spreadbase[16][3]; long i, spreaddirnum; t_float power; if(x->x_dimension == 3){ spreaddirnum=5; // horizontal plane angle_to_cart(90, 0, spreaddir[0]); angle_to_cart(180, 0, spreaddir[1]); angle_to_cart(270, 0, spreaddir[2]); // above, below angle_to_cart(0, 90, spreaddir[3]); angle_to_cart(0, -90, spreaddir[4]); for(i=1;ix_reverb_gs,spreaddir[i],x); } } else if (x->x_dimension == 2) { // for 2-D we claculate virtual sources // every 45 degrees in a horizontal plane spreaddirnum=7; angle_to_cart(90, 0, spreaddir[0]); angle_to_cart(180, 0, spreaddir[1]); angle_to_cart(270, 0, spreaddir[2]); angle_to_cart(45, 0, spreaddir[3]); angle_to_cart(135, 0, spreaddir[4]); angle_to_cart(225, 0, spreaddir[5]); angle_to_cart(315, 0, spreaddir[6]); for(i=0;ix_reverb_gs,spreaddir[i],x); } else return; for(i=0,power=0.0;ix_ls_amount;i++){ power += x->x_reverb_gs[i] * x->x_reverb_gs[i]; } power = sqrt(power); for(i=0;ix_ls_amount;i++){ final_gs[i] /= power; } } static void rvbap_bang(t_rvbap *x) // top level, vbap gains are calculated and outputted { t_atom at[MAX_LS_AMOUNT]; t_float g[3]; long ls[3]; long i; t_float *final_gs, overdist, oversqrtdist; final_gs = (t_float *) getbytes(x->x_ls_amount * sizeof(t_float)); if(x->x_lsset_available ==1){ vbap(g, ls, x); for(i=0;ix_ls_amount;i++) final_gs[i]=0.0; for(i=0;ix_dimension;i++){ final_gs[ls[i]-1]=g[i]; } if(x->x_spread != 0){ spread_it(x,final_gs); } overdist = 1 / x->x_dist; oversqrtdist = 1 / sqrt(x->x_dist); // build output for every loudspeaker for(i=0;ix_ls_amount;i++) { // first, we output the gains for the direct (unreverberated) signals // these just decrease as the distance increases #ifdef MAXMSP SETLONG(&at[0], i); SETFLOAT(&at[1], (final_gs[i] / x->x_dist)); outlet_list(x->x_outlet0, NULL, 2, at); #endif #ifdef PD SETFLOAT(&at[0], i); SETFLOAT(&at[1], (final_gs[i] / x->x_dist)); outlet_list(x->x_outlet0, gensym("list"), 2, at); #endif // second, we output the gains for the reverberated signals // these are made up of a global (all speakers) and a local part #ifdef MAXMSP SETLONG(&at[0], i+x->x_ls_amount); // direct signals come first in matrix~ SETFLOAT(&at[1], (((oversqrtdist / x->x_dist) * x->x_reverb_gs[i]) + (oversqrtdist * (1 - overdist) * final_gs[i]))); outlet_list(x->x_outlet0, NULL, 2, at); #endif #ifdef PD SETFLOAT(&at[0], (i+x->x_ls_amount)); // direct signals come first in matrix~ SETFLOAT(&at[1], (((oversqrtdist / x->x_dist) * x->x_reverb_gs[i]) + (oversqrtdist * (1 - overdist) * final_gs[i]))); outlet_list(x->x_outlet0, gensym("list"), 2, at); #endif } #ifdef MAXMSP outlet_int(x->x_outlet1, x->x_azi); outlet_int(x->x_outlet2, x->x_ele); outlet_int(x->x_outlet3, x->x_spread); outlet_float(x->x_outlet4, (double)x->x_dist); #endif #ifdef PD outlet_float(x->x_outlet1, x->x_azi); outlet_float(x->x_outlet2, x->x_ele); outlet_float(x->x_outlet3, x->x_spread); outlet_float(x->x_outlet4, x->x_dist); #endif } else post("rvbap: Configure loudspeakers first!"); freebytes(final_gs, x->x_ls_amount * sizeof(t_float)); // bug fix added 9/00 } /*--------------------------------------------------------------------------*/ static void rvbap_matrix(t_rvbap *x, t_symbol *s, int ac, t_atom *av) // read in loudspeaker matrices // and calculate the gains for the equally distributed // reverb signal part (i.e. global reverb) { long counter=0; long datapointer=0; long setpointer=0; long i; long deb=0; long azi = x->x_azi, ele = x->x_ele; // store original values t_float g[3]; long ls[3]; if(ac>0) #ifdef MAXMSP if(av[datapointer].a_type == A_LONG){ x->x_dimension = av[datapointer++].a_w.w_long; x->x_lsset_available=1; } else #endif if(av[datapointer].a_type == A_FLOAT){ x->x_dimension = (long) av[datapointer++].a_w.w_float; x->x_lsset_available=1; } else { post("Error in loudspeaker data!"); x->x_lsset_available=0; return; } //post("%d",deb++); if(ac>1) #ifdef MAXMSP if(av[datapointer].a_type == A_LONG) x->x_ls_amount = av[datapointer++].a_w.w_long; else #endif if(av[datapointer].a_type == A_FLOAT) x->x_ls_amount = (long) av[datapointer++].a_w.w_float; else { post("rvbap: Error in loudspeaker data!"); x->x_lsset_available=0; return; } else x->x_lsset_available=0; if(x->x_dimension == 3) counter = (ac - 2) / ((x->x_dimension * x->x_dimension*2) + x->x_dimension); if(x->x_dimension == 2) counter = (ac - 2) / ((x->x_dimension * x->x_dimension) + x->x_dimension); x->x_lsset_amount=counter; if(counter<=0) { post("rvbap: Error in loudspeaker data!"); x->x_lsset_available=0; return; } while(counter-- > 0){ for(i=0; i < x->x_dimension; i++){ #ifdef MAXMSP if(av[datapointer].a_type == A_LONG) #endif #ifdef PD if(av[datapointer].a_type == A_FLOAT) #endif { x->x_lsset[setpointer][i]=(long)av[datapointer++].a_w.w_float; } else{ post("rvbap: Error in loudspeaker data!"); x->x_lsset_available=0; return; } } for(i=0; i < x->x_dimension*x->x_dimension; i++){ if(av[datapointer].a_type == A_FLOAT){ x->x_set_inv_matx[setpointer][i]=av[datapointer++].a_w.w_float; } else { post("rvbap: Error in loudspeaker data!"); x->x_lsset_available=0; return; } } if(x->x_dimension == 3){ for(i=0; i < x->x_dimension*x->x_dimension; i++){ if(av[datapointer].a_type == A_FLOAT){ x->x_set_matx[setpointer][i]=av[datapointer++].a_w.w_float; } else { post("rvbap: Error in loudspeaker data!"); x->x_lsset_available=0; return; } } } setpointer++; } // now configure static reverb correction values... x->x_azi = x->x_ele = 0; vbap(g,ls, x); for(i=0;ix_ls_amount;i++){ x->x_reverb_gs[i]=0.0; } for(i=0;ix_dimension;i++){ x->x_reverb_gs[ls[i]-1]=g[i]; // post("reverb gs #%d = %f", i, x->x_reverb_gs[i]); } equal_reverb(x,x->x_reverb_gs); /* for(i=0; ix_ls_amount; i++) // do this for every speaker { post("reverb gs #%d = %f", i, x->x_reverb_gs[i]); } */ post("rvbap: Loudspeaker setup configured!"); x->x_azi = azi; // restore original panning directions x->x_ele = ele; } #ifdef MAXMSP static void rvbap_in1(t_rvbap *x, long n) /* x = the instance of the object, n = the int received in the right inlet */ // panning angle azimuth { x->x_azi = n; /* store n in a global variable */ } static void rvbap_in2(t_rvbap *x, long n) /* x = the instance of the object, n = the int received in the right inlet */ // panning angle elevation { x->x_ele = n; /* store n in a global variable */ } /*--------------------------------------------------------------------------*/ static void rvbap_in3(t_rvbap *x, long n) /* x = the instance of the object, n = the int received in the right inlet */ // spread amount { if (n<0) n = 0; if (n>100) n = 100; x->x_spread = n; /* store n in a global variable */ } /*--------------------------------------------------------------------------*/ static void rvbap_in4(t_rvbap *x, long n) /* x = the instance of the object, n = the int received in the right inlet */ // distance { if (n<1) n = 1; x->x_dist = (t_float)n; /* store n in a global variable */ } static void rvbap_ft1(t_rvbap *x, double n) /* x = the instance of the object, n = the int received in the right inlet */ // panning angle azimuth { x->x_azi = (long) n; /* store n in a global variable */ } static void rvbap_ft2(t_rvbap *x, double n) /* x = the instance of the object, n = the int received in the right inlet */ // panning angle elevation { x->x_ele = (long) n; /* store n in a global variable */ } /*--------------------------------------------------------------------------*/ static void rvbap_ft3(t_rvbap *x, double n) /* x = the instance of the object, n = the int received in the right inlet */ // spreading { if (n<0.0) n = 0.0; if (n>100.0) n = 100.0; x->x_spread = (long) n; /* store n in a global variable */ } /*--------------------------------------------------------------------------*/ static void rvbap_ft4(t_rvbap *x, double n) /* x = the instance of the object, n = the int received in the right inlet */ // distance { if (n<1.0) n = 1.0; x->x_dist = (t_float)n; /* store n in a global variable */ } #endif static void *rvbap_new(t_symbol *s, int ac, t_atom *av) /* create new instance of object... MUST send it an int even if you do nothing with this int!! */ { t_rvbap *x; #ifdef MAXMSP x = (t_rvbap *)newobject(rvbap_class); t_floatin(x,4); /* takes the distance */ intin(x,3); intin(x,2); /* create a second (int) inlet... remember right-to-left ordering in Max */ intin(x,1); /* create a second (int) inlet... remember right-to-left ordering in Max */ x->x_outlet4 = floatout(x); /* distance */ x->x_outlet3 = intout(x); x->x_outlet2 = intout(x); /* create an (int) outlet - rightmost outlet first... */ x->x_outlet1 = intout(x); /* create an (int) outlet */ x->x_outlet0 = listout(x); /* create a (list) outlet */ #endif #ifdef PD x = (t_rvbap *)pd_new(rvbap_class); floatinlet_new(&x->x_ob, &x->x_azi); floatinlet_new(&x->x_ob, &x->x_ele); floatinlet_new(&x->x_ob, &x->x_spread); floatinlet_new(&x->x_ob, &x->x_dist); x->x_outlet0 = outlet_new(&x->x_ob, gensym("list")); x->x_outlet1 = outlet_new(&x->x_ob, gensym("float")); x->x_outlet2 = outlet_new(&x->x_ob, gensym("float")); x->x_outlet3 = outlet_new(&x->x_ob, gensym("float")); x->x_outlet4 = outlet_new(&x->x_ob, gensym("float")); #endif x->x_azi = 0; x->x_ele = 0; x->x_dist = 1.0; x->x_spread_base[0] = 0.0; x->x_spread_base[1] = 1.0; x->x_spread_base[2] = 0.0; x->x_spread = 0; x->x_lsset_available =0; if (ac>0) { #ifdef MAXMSP if (av[0].a_type == A_LONG) x->x_azi = av[0].a_w.w_long; else #endif if (av[0].a_type == A_FLOAT) x->x_azi = av[0].a_w.w_float; } if (ac>1) { #ifdef MAXMSP if (av[1].a_type == A_LONG) x->x_ele = av[1].a_w.w_long; else #endif if (av[1].a_type == A_FLOAT) x->x_ele = av[1].a_w.w_float; } if (ac>2) { #ifdef MAXMSP if (av[2].a_type == A_LONG) x->x_dist = (float)av[2].a_w.w_long; else #endif if (av[2].a_type == A_FLOAT) x->x_dist = av[2].a_w.w_float; } return(x); /* return a reference to the object instance */ }