/* Copyright (c) 1997-1999 Miller Puckette. * For information on usage and redistribution, and for a DISCLAIMER OF ALL * WARRANTIES, see the file, "LICENSE.txt," in this distribution. */ /* "filters", both linear and nonlinear. */ #include "m_pd.h" #include //* ---------------- doublepole~ - raw doublepole filter ----------------- */ typedef struct doublepolectl { t_sample c_x1; t_sample c_x2; t_sample c_fb1; t_sample c_fb2; } t_doublepolectl; typedef struct sigdoublepole { t_object x_obj; t_float x_f; t_doublepolectl x_cspace; t_doublepolectl *x_ctl; } t_sigdoublepole; static t_class *sigdoublepole_class = NULL; static void sigdoublepole_list(t_sigdoublepole *x, t_symbol *s, int argc, t_atom *argv); static void *sigdoublepole_new(t_symbol *s, int argc, t_atom *argv) { t_sigdoublepole *x = (t_sigdoublepole *)pd_new(sigdoublepole_class); outlet_new(&x->x_obj, &s_signal); x->x_ctl = &x->x_cspace; x->x_cspace.c_x1 = x->x_cspace.c_x2 = 0; sigdoublepole_list(x, s, argc, argv); x->x_f = 0; return (x); } static t_int *sigdoublepole_perform(t_int *w) { t_sample *in = (t_sample *)(w[1]); t_sample *out = (t_sample *)(w[2]); t_doublepolectl *c = (t_doublepolectl *)(w[3]); int n = (t_int)(w[4]); int i; t_sample last = c->c_x1; t_sample prev = c->c_x2; t_sample fb1 = c->c_fb1; t_sample fb2 = c->c_fb2; for (i = 0; i < n; i++) { t_sample output = *in++ + fb1 * last + fb2 * prev; if (PD_BIGORSMALL(output)) { output = 0; } *out++ = output; prev = last; last = output; } c->c_x1 = last; c->c_x2 = prev; return (w+5); } static void sigdoublepole_list(t_sigdoublepole *x, t_symbol *s, int argc, t_atom *argv) { t_float fb1 = atom_getfloatarg(0, argc, argv); t_float fb2 = atom_getfloatarg(1, argc, argv); t_float discriminant = fb1 * fb1 + 4 * fb2; t_doublepolectl *c = x->x_ctl; if (discriminant < 0) { /* imaginary roots -- resonant filter */ /* they're conjugates so we just check that the product is less than one */ if (fb2 >= -1.0f) { goto stable; } } else { /* real roots */ /* check that the parabola 1 - fb1 x - fb2 x^2 has a vertex between -1 and 1, and that it's nonnegative at both ends, which implies both roots are in [1-,1]. */ if (fb1 <= 2.0f && fb1 >= -2.0f && 1.0f - fb1 -fb2 >= 0 && 1.0f + fb1 - fb2 >= 0) { goto stable; } } /* if unstable, just bash to zero */ fb1 = fb2 = 0; stable: c->c_fb1 = fb1; c->c_fb2 = fb2; } static void sigdoublepole_set(t_sigdoublepole *x, t_symbol *s, int argc, t_atom *argv) { t_doublepolectl *c = x->x_ctl; c->c_x1 = atom_getfloatarg(0, argc, argv); c->c_x2 = atom_getfloatarg(1, argc, argv); } static void sigdoublepole_dsp(t_sigdoublepole *x, t_signal **sp) { dsp_add(sigdoublepole_perform, 4, sp[0]->s_vec, sp[1]->s_vec, x->x_ctl, sp[0]->s_n); } void doublepole_tilde_setup(void) { sigdoublepole_class = class_new(gensym("doublepole~"), (t_newmethod)sigdoublepole_new, 0, sizeof(t_sigdoublepole), 0, A_GIMME, 0); CLASS_MAINSIGNALIN(sigdoublepole_class, t_sigdoublepole, x_f); class_addmethod(sigdoublepole_class, (t_method)sigdoublepole_dsp, gensym("dsp"), 0); class_addlist(sigdoublepole_class, sigdoublepole_list); class_addmethod(sigdoublepole_class, (t_method)sigdoublepole_set, gensym("set"), A_GIMME, 0); class_addmethod(sigdoublepole_class, (t_method)sigdoublepole_set, gensym("clear"), A_GIMME, 0); }