#include "zexy.h" #ifdef __SSE__ #include <xmmintrin.h> #define Z_SIMD_BLOCK 16 /* must be a power of 2 */ #define Z_SIMD_BYTEALIGN (128/8) /* assume 128 bits */ #define Z_SIMD_CHKBLOCKSIZE(n) (!(n&(Z_SIMD_BLOCK-1))) #define Z_SIMD_CHKALIGN(ptr) ( ((unsigned long)(ptr) & (Z_SIMD_BYTEALIGN-1)) == 0 ) typedef union { __m128 vec; t_sample f[4]; } t_sample4; /** * runs a check whether the SSE-optimized perform routine returns the same result as the generic routine * if the results differ, the SSE-code is probably broken, so we should fallback to the generic code */ static int zexy_testSSE(t_perfroutine genericperf, t_perfroutine sseperf, unsigned int numinchannels, unsigned int numoutchannels) { /* this currently only works with single input, single output */ /* LATER make it work truely multichannel */ if(1==numinchannels && 1==numoutchannels) { t_int w1[4], w2[4]; t_sample4 in, in1[4], in2[4], out1[4], out2[4]; int i, j; z_verbose(2, "checking for SSE compatibility"); in.f[0]=0.; in.f[1]=-0.5; in.f[2]=0.5; in.f[1]=5.; for(i=0; i<4; i++) { in1[i].f[0]=in.f[i]; in1[i].f[1]=in.f[i]; in1[i].f[3]=in.f[i]; in1[i].f[2]=in.f[i]; out1[i].f[0]=out1[i].f[1]=out1[i].f[2]=out1[i].f[3]=0.f; in2[i].f[0]=in.f[i]; in2[i].f[1]=in.f[i]; in2[i].f[3]=in.f[i]; in2[i].f[2]=in.f[i]; out2[i].f[0]=out2[i].f[1]=out2[i].f[2]=out2[i].f[3]=0.f; } w1[0]=(t_int)0; w1[1]=(t_int)&in1; w1[2]=(t_int)&out1; w1[3]=(t_int)16; (*genericperf)(w1); w2[0]=(t_int)0; w2[1]=(t_int)&in2; w2[2]=(t_int)&out2; w2[3]=(t_int)16; (*sseperf)(w2); for(i=0; i<4; i++) { for(j=0; j<4; j++) { if(fabsf(out1[i].f[j]-out2[i].f[j])>1e-17) { z_verbose(2, "generic and optimized routines return different results: skipping optimization"); z_verbose(2, "[%d,%d]: ((%f->%f)!=(%f->%f))", i, j, in1[i].f[j], out1[i].f[j], in2[i].f[j], out2[i].f[j] ); return 0; } } } } else { /* no tests yet */ } z_verbose(2, "using SSE optimization"); return 1; } #endif /* __SSE__ */