1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
|
/*
This external makes the two main test-functions available :
dirac~ : will make a single peak (eg: a 1 in all the 0s) at a desired position in the signal-vector
the position can be passed as an argument when creating the object
step~ : will make a unity step at a desired point in the signal-vector; the second input specifies a
length: after the so-specified time has elapsed, the step will toggle back to the previous
value;
the length can be passed as an argument when creating the object
with length==1 you might do the dirac~ thing a little bit more complicated
with length==0 the output just toggles between 0 and 1 every time you bang the object
NOTE : the inlets do NOT specify any times but sample-NUMBERS; there are 64 samples in a signal-vector,
each "lasting" for 1/44100 secs.
*/
#include "zexy.h"
#ifdef NT
#pragma warning( disable : 4244 )
#pragma warning( disable : 4305 )
#endif
/* ------------------------ dirac~ ----------------------------- */
static t_class *dirac_class;
typedef struct _dirac
{
t_object x_obj;
t_float position;
t_float do_it;
} t_dirac;
static void dirac_bang(t_dirac *x)
{
x->do_it = x->position;
}
static void dirac_float(t_dirac *x, t_float where)
{
x->do_it = x->position = where;
}
static t_int *dirac_perform(t_int *w)
{
t_dirac *x = (t_dirac *)(w[1]);
t_float *out = (t_float *)(w[2]);
int n = (int)(w[3]);
int do_it = x->do_it;
while (n--)
{
*out++ = (!do_it--);
}
x->do_it = do_it;
return (w+4);
}
static void dirac_dsp(t_dirac *x, t_signal **sp)
{
dsp_add(dirac_perform, 3, x, sp[0]->s_vec, sp[0]->s_n);
}
static void dirac_helper(void)
{
post("%c dirac~-object :: generates a dirac (unity-pulse)", HEARTSYMBOL);
post("creation : \"dirac~ [<position>]\" : create a dirac at specified position (in samples)\n"
"inlet\t: <position>\t: create a dirac at new position\n"
"\t 'bang'\t: create a dirac at specified position\n"
"\t 'help'\t: view this\n"
"outlet\t: signal~");
}
static void *dirac_new(t_floatarg where)
{
t_dirac *x = (t_dirac *)pd_new(dirac_class);
outlet_new(&x->x_obj, gensym("signal"));
x->do_it = 0;
x->position = where;
return (x);
}
void dirac_setup(void)
{
dirac_class = class_new(gensym("dirac~"), (t_newmethod)dirac_new, 0,
sizeof(t_dirac), 0, A_DEFFLOAT, 0);
class_addfloat(dirac_class, dirac_float);
class_addbang(dirac_class, dirac_bang);
class_addmethod(dirac_class, (t_method)dirac_dsp, gensym("dsp"), 0);
class_addmethod(dirac_class, (t_method)dirac_helper, gensym("help"), 0);
class_sethelpsymbol(dirac_class, gensym("zexy/dirac~"));
}
/* ------------------------ step~ ----------------------------- */
static t_class *step_class;
typedef struct _step
{
t_object x_obj;
int position;
int length;
int toggle;
int wait4start;
int wait4stop;
} t_step;
static void step_bang(t_step *x)
{
x->wait4stop = x->length + (x->wait4start = x->position);
}
static void step_float(t_step *x, t_float where)
{
x->wait4stop = x->length +
(x->wait4start =
(x->position = (where>0)*where)
);
}
static void step_setlength(t_step *x, t_float arg)
{
x->length = 1 + (arg>0)*arg;
}
static t_int *step_perform(t_int *w)
{
t_step *x = (t_step *)(w[1]);
t_float *out = (t_float *)(w[2]);
int n = (int)(w[3]);
int toggle = x->toggle;
int wait4start = x->wait4start, wait4stop = x->wait4stop;
while (n--)
{
wait4stop--;
if (!wait4start--) toggle ^= 1;
else if (!wait4stop) toggle ^= 1;
*out++ = toggle;
}
x->wait4start = wait4start;
x->wait4stop = wait4stop;
x->toggle = toggle;
return (w+4);
}
static void step_dsp(t_step *x, t_signal **sp)
{
dsp_add(step_perform, 3, x, sp[0]->s_vec, sp[0]->s_n);
}
static void step_helper(void)
{
post("%c step~-object :: generates a unity-step", HEARTSYMBOL);
post("creation : \"dirac~ [<position> [<length>]]\" : create a rectangular window\n"
"\t\t\tat specified position and with specified length (in samples)\n"
"inlet1\t: <position>\t: create a rectangular window at new position\n"
"\t 'bang'\t: create a rectangular window at specified position\n"
"\t 'help'\t: view this\n"
"inlet2\t: <length>\t: define new window length ('0' will make a unity-step)\n"
"outlet\t: signal~");
}
static void *step_new(t_floatarg farg)
{
t_step *x = (t_step *)pd_new(step_class);
inlet_new(&x->x_obj, &x->x_obj.ob_pd, gensym("float"), gensym("ft1"));
outlet_new(&x->x_obj, gensym("signal"));
x->position = 0;
x->wait4start = x->wait4stop = 0;
x->toggle = 1;
step_setlength(x, farg);
return (x);
}
void step_setup(void)
{
step_class = class_new(gensym("step~"), (t_newmethod)step_new, 0,
sizeof(t_step), 0, A_DEFFLOAT, 0);
class_addfloat(step_class, step_float);
class_addbang(step_class, step_bang);
class_addmethod(step_class, (t_method)step_setlength, gensym("ft1"), A_FLOAT, 0);
class_addmethod(step_class, (t_method)step_dsp, gensym("dsp"), 0);
class_addmethod(step_class, (t_method)step_helper, gensym("help"), 0);
class_sethelpsymbol(step_class, gensym("zexy/step~"));
}
/* global setup routine */
void z_testfun_setup(void)
{
step_setup();
dirac_setup();
}
|