
pdj : java interface for pure-data
electric-one software

(c) copyright Pascal Gauthier 2008

Page 1/14

Legal Information
PDJ is not endorsed or known of by Cycling74. It was written by a
Max/MSP user [me] that wanted to use his objects in both
environment.

PDJ is not 100% compatible with mxj on Max/MSP, I am doing my
best to keep PDJ API compatible. The most important is to keep the
object IO (inlet/outlet interaction) as close has possible.

This document is nowhere from professional, please note that
English is my second language.

Feel free if you want to contirubte :

Pascal Gauthier

asb2m10 at users.sourceforge.net

Page 2/14

Licence
Copyright (c) 2004-2008, Pascal Gauthier

All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions are met:

 * Redistributions of source code must retain the above copyright notice,

 this list of conditions and the following disclaimer.

 * Redistributions in binary form must reproduce the above copyright

 notice, this list of conditions and the following disclaimer in the

 documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS"

AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE

ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE

LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF

SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS

INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN

CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)

ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE

POSSIBILITY OF SUCH DAMAGE.

Page 3/14

Table Of Content
Legal Information..2
Licence...3
Table Of Content...4
Getting Started...5

Introduction...5
Building PDJ...5
Configuring PDJ...6

Key Listing...6
Using OS X...7

Working Environment..8
Directly from the pdj project directory..8
From the command line...8
From Eclipse IDE..9

Java Externals...10
Working with Atoms..10
MaxObject Class..10

Creating the Object...10
Object inlets/outlets declaration..10

Handling inlet data..10
Information Inlet..11
Sending Atom via outlet..11

Processing DSP signal...12
The signal pipe : MSPSignal...12
Inlets/Outlets creation...12
DSP initialization..12
DSP perform..13

Page 4/14

Getting Started

Introduction

PDJ is a pure-data external that help to bridge the Java environment to
pure-data. Java has multiple advantages over C and one of the them is
the fact that you can write your external on one platform and the run it
on any other platform that runs Java. This also apply on MAX/MSP since
the PDJ API is based on the mxj implementation.

While Java is certainly not the only language you should use with pure-
data, it gives you these advantages :

1. It is multi-platform, you can run your external on Windows / OSX /
Linux with the same package.

2. It is multi-program, you can run your external on pure-data /
MaxMSP with the same package.

3. You don't have to restart pure-data each time you recompile your
external

4. Access to a wide range of open source Java libraries that works
right out of box.

So in theory, you can write a Java external object on Linux with pure-
data and then give it to your friend that runs MAX/MSP on OS X PowerPC.
You don't have to recompile your external, the package remains the
same for all platforms and program.

Building PDJ

Unless you are running Linux, we strongly advise you to use the binary
distribution. Before building, make sure you have these pre-requisite :

1. Java development Kit version 1.4 or better

2. Pure-Data 0.41 or better

3. GNU GCC (for Linux/OS X) or Microsoft MSVC (Windows)

4. Apache ANT 1.6 or better

You must edit the file [your platform]-build.properties that contains the
definition of your build environment. Usually, you will have to change the
jdk.home and the pd.home properties. On OS X, you can point your
pd.home to the directory where pure-data is installed. If for example it is
installed in /Application, you can point the the directory
/Application/pd.app/Contents/Resources.

You can build PDJ by simply issuing “ant”. This will a create a PDJ
distribution in the directory dist. You can use the ant target “ant test” to

Page 5/14

test your PDJ build.

Configuring PDJ

Most of the PDJ configuration properties is available in the file
pdj.properties. This file can be in two directories if you are using the
source distribution, so please use the file in the “dist” directory since the
“res” directory is used for source control.

Key Listing

Key pdj.classes-dir=[directory]

Load your classes directly from a directory. Unlike mxj, you can also put
your sources in that directory. Each time you will load a .class, PDJ will
compare the time of when the .class has been generated and when the
.java has been modified. If the Java source file is younger, PDJ will try to
compile the classes with Javac. If the compile was successful, PDJ will
simply load the class as an external into pure-data. You don't have to
restart pure-data each time you modify theses classes since PDJ will
reload your the classe each time it is loaded. Only one directory must be
specified.

Key pdj.classpath=[path]

Load your classes from a dynamic classpath. Unlike a real classpath, if
you point to a directory, PDJ will try to find any .jar in this directory and
add it to the real Java classpath. Each time you re-instantiate a pdj
object, the Java classpath is rebuild so you don't have to restart pure-
data when you have changed a .jar or a class file.

Key pdj.system-classpath=[path]

Unlike the dynamic classpath, this classpath is static and will only be
loaded once the first PDJ object is used. In some circumstances, you will
have to put your classes in this classpath. Some projects that use Java
reflection will not work with the dynamic classpath since it is always
rebuilded when the MaxObject is loaded.

Key pdj.verbose-classloader=[boolean]

This will tell pdj to print the current classpath each time a class is trying
to be loaded. This is often useful if your class cannot be loaded since
Java cannot find the specified class.

Page 6/14

Key pdj.JAVA_HOME=[path]

This will tell PDJ where to find the Java virtual machine. Usually, you can
comment out this field since PDJ will try to find the JVM by looking into
the environment of the operating system.

Key pdj.vm_args=[args]

By using this key you can specify additional VM parameters that will
passed when the JVM will be loaded.

Using OS X

Since 0.8.5, PDJ comes with two OS X distributions, one UB (PowerPC /
Intel) for 10.4 and 10.5 and another one for 10.3. Even if your build of
pure-data is specifically made for PowerPC or Intel, the fat binaries will
work in both environnement.

Using GUI (AWT) with OS X

If you are using pdj on Mac OS and the Java code uses AWT/Swing class,
you will need extra pd parameters to make it work. The problem is that
OS X have a very strict GUI event mechanism that pd is not compatible
with. Linux and Windows don't have this limitation.

To counter this problem, pdj also comes with a custom pd scheduler. This
scheduler will simply process the GUI event in the main thread and it will
create a secondary thread that will process the standard pd scheduler.

From pd 41.2, you will need to apply a special patch since the portion of
code in pure-data that read the “custom scheduler” is broken. You can
apply the patch file osx_extsched_fix.patch in the src/pd_patch directory.
This patch will be submitted to pure-data development team.

Once the patch is applied, you need to initialize the pdj scheduler. This is
done by following menu Pd->Preference->Startup.

Add the following argument from “Startup Flags”

-schedlib [full path of the pdj external without the extension]

You will also need to rename your extension from pdj.pd_darwin to
pdj.d_fat. This is simply because the startup extension of pure-data must
be postfixed by d_fat.

Be sure to put the right path since this can crash pure-data at startup. If
it is the case, you can erase your pure-data parameters by deleting this
file :

~/Library/Preferences/org.puredata.pd.plist

Page 7/14

If the pdj external scheduler is initialized correctly you should see to
message at startup :

pdj: using pdj scheduler for Java AWT.

Page 8/14

Working Environment
Before we get starting working with PDJ, we will look at different ways to
work on a Java project.

Directly from the pdj project directory

Unlike mxj, it is possible to write .java files that will automatically be
compiled by PDJ. This can be useful if you need to write a quick proof of
concept class or a very simple object.

First you need to configure the PDJ properties named pdj.classes-dir.
Each time you will ask pure-data to instanced a new PDJ object, this tool
will look if there is a java file in the same directory. If this property is not
configured, PDJ will look in the classes directory in the same path where
it is installed.

You can try out new this feature by simply creating a new java file with
this content. This file must be dropped in the classes directory.

import com.cycling74.max.*;

public class void Test {

public bang() {

post(“Hello World”);

}

};

Then you can simply call the PDJ with the name “pdj Test”. Later, you
can connect a bang message to this object and you should see a “pdj:
Hello World” message in the pure-data console when the bang message
is sended.

From the command line

Apache ANT is a great tool for working on the command line. You can
create very simple ANT build file that will be compatible with most Java
environment. To create a new project; into your main project directory,
create 3 sub-directory :

● /lib where you can put the pdj.jar reference (copy it from the PDJ
distribution)

● /src where you can put your java source files

● /work where you can put the compiled java source file.

Page 9/14

<project name=”pdj-project” default=”package”>

<target name=”package”>

<javac srcdir=”src” destdir=”work”>

<classpath>

<fileset dir=”lib” includes=”*.jar”/>

</classpath>

</javac>

</target>

</project>

Later, you can configure the pdj.classpath property to point where the
directory “work” is. Then, simply issue “ant” from the command line
when you need to rebuild your project.

From Eclipse IDE

Eclipse is also a great tool to use to develop Java programs. Building a
pdj external with Eclipse is simple :

● Select “File” -> “New” - > “New Java Project” from the IDE menu

● In the project layout section, you will have to select “Create
separate folders for source and class files”. Click on “Next”

● In the Java settings, select the “Libraries” thumb.

● Click on “Add External JARS...”.

● Select the file : pdj.jar that included in the PDJ distribution

Then, you can configure the “pdj.classpath” property that is specified in
the pdj.properties files. You should point to the “bin” directory of where
your project has been created by Eclipse.

One of the great advantages of use Eclipse is that your Java classes will
automatically be compiled each time you modify the Java file.

Page 10/14

Java Externals

Working with Atoms

All information that will be sended and received by pure-data will be
encapsulated into atoms that also exists in Java. To create an Atom, you
must use the corresponding factory :

Atom.newAtom(“bang”);

Atom.newAtom(10);

Atom.newAtom(40f);

Use Atom.getInt() or Atom.getFloat() to get the number value and

Atom.getString() to get the symbol content. Atoms are immutable, i.e.: it
is not possible to change de value of an atom. To do that, you must
create a new Atom with the new value.

MaxObject Class

Creating the Object

You can use two constructor: MaxObject() or MaxObject(Atom[] args). If
arguments are specified when the object is created, MaxObject(Atom[]
args) will be called. Failing to override this constructor when arguments
are added to the contructor will throw an exception. If no arguments are
added to the object but the MaxObject(Atom[] args) is overriden then
this constructor will be called with an empty atom array.

Object inlets/outlets declaration

Unlike mxj with Max/MSP, PDJ doesn't have any typed inlets/outlets (to
the exception for signal (audio) inlets/outlets). To assure the
compatibility with Max/MSP, the API has been match and any typed
declaration will always be considered as “ANYTHING”.

If our object only receives/output data, you can use the MaxObject
method :

declareIO(int inlets, int outlets)

Inlets and outlets must be defined in the object constructor.
Falling to do so will throw an exception.

Page 11/14

Handling inlet data

Depending on the data that has been received by the inlet, a specific
Java method in your object will be called. The know from which inlet your
object received the data, you can use the method getInlet(). This will
return the inlet number from which it has received the data.

● If it is a bang message then void bang() method will be called. If
the bang method has not been overridden then void
anything(“bang”, null) will be called.

● If it is a float, the method void inlet(float f) will be called. If the
void intlet(float f) has not been overridden, PDJ will try to look for
void inlet(int i), this is done to assure the Max/MSP compatibility. If
void inlet(int i) is not overridden then PDJ will call the anything
method with argument void anything(“float”, Atom[1] =
{ Atom.newAtom(f) }).

● If it is a list, the method void list(Atom content[]) will be called. If
the method is not overridden, then anything(“list”, Atom content[])
will be called.

● If it is a symbol, PDJ will try to map this symbol to a Java method.
For example if the message “foo” is received, the method “foo” will
be called. If this method is not overridden, then the method void
anything(“foo”, null) will be called. If the symbol is within a list, the
method void foo(Atom []args) will be called. Same thing applies if
the method has not been overridden with void anything(“foo”,
Atom args[]);

Information Inlet

Unless you specify not to create an “info inlet”, PDJ will always create a
last inlet that will support “info message”.

Sending Atom via outlet

It is possible to send Atom by using the outlet method. This method has
been overridden to support multiple type. Once it is parsed, a real pure-
data atom will be created supporting the original Java type.

Use this method to send data to an outlet

outlet(int outlet_number, <data>)

Page 12/14

Processing DSP signal
To be able to process audio signal with your MaxObject you will need to
extends the class MSPObject and not MaxObject. All the methods that
you used with MaxObjects are still available since MSPObject extends
MaxObject.

The signal pipe : MSPSignal

Signal audio is always passed into a MSPSignal. For every signal inlet or
outlet the is an attached MSPSignal. In every MSPSignal, it is possible to
know sampling sampling rate (member sr MSPSignal) and the number of
sample (member n in MSPSignal) to be processed. This object will be
instantiated by PDJ when pure-data will start DSP processing. See DSP
initializations.

Inlets/Outlets creation

Because your object will process audio data, signal inlets or outlets will
have to be defined. Unlike declareIO(int inlet, int oulet), data type
(between message inlets/outlets and audio inlets/outlets) will have to be
identified.

This quickie method

declareTypedIO(String ins, String outs)

To identify audio data, the type 's' must be used. If you need to define a
data inlet/outlet, you can use “a” to define “ANYTHING”.

For example, if you need to create 2 signal inlets, 1 message inlet and 1
signal outlet, 2 message outlet, you can use :

declareTypeIO(“ssa”, “saa”);

Because pure-data does not type any data, the outlet type “ANYTHING”
will be map to a standard message inlet/outlet. Please note that the
order given in the format is important..

DSP initialization

Before pure-data starts processing audio signal, a special startup
method will be called with name “dsp”. In this method, you will receive
the initial MSPSignal objects. For the first time, you will be able to know
the block size of each DSP samples (from the number of samples n
member) and the sample rate used (from the sr member). The number
of sample and sample rate will be the same across MSPSignal given by
PDJ.

Page 13/14

This method must return a DSP processing method that will be called at
each DSP cycle. The method can be referred by using the special helper
getPerformMethod.

This is an example of a “dsp” method with a performer :

public void dsp(MSPSignal[] ins, MSPSignal[] outs) {

return getPerformMethod(“doit_dsp”);

}

public void doit_dsp(MSPSignal[] ins, MSPSignal[] outs) {

for(int i=0;i<ins[0].n;i++) {

outs[0] = ins[0] + 1;

}

}

You decide on the name of the perform method, the only limitation is
that your method must return “void” and have a “MSPSignal[],
MSPSignal[]” parameters.

DSP perform

Once the DSP method given to PDJ, pure-data will call your method at
each DSP cycle. It is in this method that your data will be processed.
Note that this method must be optimized because it will be called
multiple time within a second. It is strongly advised to not create any
objects in this method. If you have any objects to create, create them in
the “dsp” startup method and cache theses objects for maximum
performance.

If an exception occurs in this method, the signal will be reset to
“0” and the performer method will never be called until it is re-
initialized.

Page 14/14

	Legal Information
	Licence
	Table Of Content
	Getting Started
	Introduction
	Building PDJ
	Configuring PDJ
	Key Listing

	Using OS X
	Using GUI (AWT) with OS X

	Working Environment
	Directly from the pdj project directory
	From the command line
	From Eclipse IDE

	Java Externals
	Working with Atoms
	MaxObject Class
	Creating the Object
	Object inlets/outlets declaration

	Handling inlet data
	Information Inlet
	Sending Atom via outlet

	Processing DSP signal
	The signal pipe : MSPSignal
	Inlets/Outlets creation
	DSP initialization
	DSP perform

