diff options
author | Miller Puckette <millerpuckette@users.sourceforge.net> | 2005-12-31 00:59:49 +0000 |
---|---|---|
committer | Miller Puckette <millerpuckette@users.sourceforge.net> | 2005-12-31 00:59:49 +0000 |
commit | 65a1b98552d7c6a93aedfb7c9b5d83f9038227cb (patch) | |
tree | 07c884364ea5ba2955497dc88bc68cc283bdfb44 /pd/doc | |
parent | 2fb9e2d8c8dbea29f27c3d47c3d65d18bc54765c (diff) |
Added about 64 files that I hadn't realized weren't in the CVS
repository. Threw in pd/portaudio/pa_win_wdmks for good measure, although
I haven't tried compiling that in yet (no windoze machine handy today).
svn path=/trunk/; revision=4316
Diffstat (limited to 'pd/doc')
43 files changed, 6382 insertions, 0 deletions
diff --git a/pd/doc/1.manual/fig11.3.png b/pd/doc/1.manual/fig11.3.png Binary files differnew file mode 100644 index 00000000..daf6e7b0 --- /dev/null +++ b/pd/doc/1.manual/fig11.3.png diff --git a/pd/doc/1.manual/fig11.4.png b/pd/doc/1.manual/fig11.4.png Binary files differnew file mode 100644 index 00000000..d8d99682 --- /dev/null +++ b/pd/doc/1.manual/fig11.4.png diff --git a/pd/doc/3.audio.examples/D13.additive.qlist.pd b/pd/doc/3.audio.examples/D13.additive.qlist.pd new file mode 100644 index 00000000..2c9b3cb7 --- /dev/null +++ b/pd/doc/3.audio.examples/D13.additive.qlist.pd @@ -0,0 +1,47 @@ +#N canvas 233 179 667 449 12; +#X obj 16 182 osc-voice amp1 pit1; +#X obj 16 206 osc-voice amp2 pit2; +#X obj 16 230 osc-voice amp3 pit3; +#X obj 16 254 osc-voice amp4 pit4; +#X obj 16 278 osc-voice amp5 pit5; +#X obj 16 302 osc-voice amp6 pit6; +#X obj 16 326 osc-voice amp7 pit7; +#X obj 16 350 osc-voice amp8 pit8; +#X obj 464 343 qlist; +#X msg 394 185 stop; +#X msg 524 300 read qlist.txt; +#X obj 524 255 loadbang; +#X text 258 164 start; +#X text 395 161 stop; +#X text 534 279 reread file; +#X msg 467 199 rewind; +#X msg 535 199 next; +#X msg 251 212 tempo 100 \, bang; +#X msg 250 188 tempo 1 \, bang; +#X text 82 11 USING QLIST TO SEQUENCE AN OSCILLATOR BANK; +#X text 479 178 single step; +#X obj 532 392 r #; +#X text 28 49 Here is an eight voice additive synthesis patch controlled +by a qlist. Open a text editor on the file \, "qlist.txt" \, to see +how the oscillators' amplitudes and frequencies are specified. The +abstraction \, "osc-voice" \, shows an effective way to make patches +react to qlists but also to mousing.; +#X text 234 391 this is where qlist comments go:; +#X obj 16 380 output~; +#X text 394 423 updatged for Pd version 0.39; +#X connect 0 0 1 0; +#X connect 1 0 2 0; +#X connect 2 0 3 0; +#X connect 3 0 4 0; +#X connect 4 0 5 0; +#X connect 5 0 6 0; +#X connect 6 0 7 0; +#X connect 7 0 24 0; +#X connect 7 0 24 1; +#X connect 9 0 8 0; +#X connect 10 0 8 0; +#X connect 11 0 10 0; +#X connect 15 0 8 0; +#X connect 16 0 8 0; +#X connect 17 0 8 0; +#X connect 18 0 8 0; diff --git a/pd/doc/3.audio.examples/D14.vibrato.pd b/pd/doc/3.audio.examples/D14.vibrato.pd new file mode 100644 index 00000000..3f4d6ea2 --- /dev/null +++ b/pd/doc/3.audio.examples/D14.vibrato.pd @@ -0,0 +1,104 @@ +#N canvas 80 10 709 653 12; +#X obj 28 258 r trigger; +#X obj 28 454 *~; +#X obj 28 482 *~; +#X floatatom 63 304 3 0 100 0 - - -; +#X msg 460 493 \; trigger 0; +#X obj 28 281 unpack; +#X floatatom 28 304 1 0 100 0 - - -; +#X obj 27 533 +~ 0.3; +#X obj 27 559 cos~; +#X obj 27 507 osc~; +#X obj 63 323 mtof; +#X obj 63 345 sqrt; +#X obj 63 367 sqrt; +#X text 572 461 <-- octave up; +#X msg 460 416 \; trigger 1 60; +#X msg 460 453 \; trigger 1 72; +#X text 550 494 <-- release; +#X text 556 512 is optional; +#X obj 28 424 *~; +#X obj 237 404 +~ 1; +#N canvas 0 0 450 300 graph1 0; +#X array array62 131 float 1; +#A 0 0.970031 1 0.970031 0.881921 0.740952 0.555571 0.336891 0.0980184 +-0.146729 -0.382682 -0.595698 -0.773009 -0.88 -0.9 -0.92 -0.92 -0.85773 +-0.707109 -0.514106 -0.290288 -0.0490716 0.195086 0.427551 0.63439 +0.803205 0.86 0.88 0.88 0.88 0.84 0.82 0.471402 0.242986 6.63397e-06 +-0.242974 -0.471391 -0.671554 -0.831465 -0.941541 -0.995184 -0.989178 +-0.923883 -0.803213 -0.68 -0.42 -0.24 0.1 0.4 0.6 0.7071 0.857723 0.956937 +0.998795 0.980787 0.903994 0.773018 0.595708 0.382694 0.146742 -0.0980052 +-0.336878 -0.55556 -0.7 -0.8 -0.88 -0.88 -0.88 -0.84 -0.82 -0.555582 +-0.336903 -0.0980316 0.146716 0.38267 0.595687 0.773001 0.903983 0.980782 +0.998796 0.956945 0.857737 0.707119 0.514117 0.290301 0.0490849 -0.195073 +-0.427539 -0.63438 -0.803197 -0.923873 -0.989174 -0.995187 -0.94155 +-0.83148 -0.671573 -0.471414 -0.242999 -1.99019e-05 0.242961 0.471379 +0.671544 0.831458 0.88 0.9 0.9 0.88 0.803221 0.63441 0.08 -0.14 -0.28 +-0.48 -0.64 -0.72 -0.857717 -0.956933 -0.998794 -0.98079 -0.904 -0.773026 +-0.595719 -0.382706 -0.146755 0.097992 0.336866 0.555549 0.740934 0.881909 +0.970025 1 0.970038; +#X coords 0 1 130 -1 200 100 1; +#X restore 246 508 graph; +#X obj 237 356 tabosc4~ array62; +#X floatatom 237 312 3 0 0 0 - - -; +#X obj 237 333 / 6; +#X obj 237 380 *~; +#X floatatom 391 333 3 0 0 0 - - -; +#X text 236 438 since we'll multiply \,; +#X text 235 453 vibrato output should; +#X text 235 470 be centered at 1 \, not 0; +#X text 273 384 multiply by vib depth; +#X obj 391 361 / 6923; +#X text 62 425 apply vibrato; +#X text 66 453 fourth; +#X text 69 469 power; +#X text 97 537 waveform; +#X text 96 517 simple; +#X text 457 354 4/(exp(log(2)/1200)-1); +#X text 461 335 conversion factor is; +#X text 384 295 vibrato depth; +#X text 383 312 in cents; +#X text 228 274 vibrato speed; +#X text 227 291 in Hertz; +#X obj 28 392 adsr 0 100 200 100 300; +#X obj 26 587 output~; +#X text 88 9 USING ADSRS FOR PORTAMENTO AND ADDING VIBRATO TOO; +#X text 43 30 Portamento can be treated as a special case of an ADSR +envelope \, with 100 percent sustain. Vibrato is properly computed +in units of pitch \, but it's also possible to do the job without having +to convert from pitch to frequency units at the audio rate. To do this +we just raise the "pitch" to the fourth power \, so that it acts pseudo-exponentially. +Rather than add vibrato to the ADSR output \, we multiply a signal +which controls relative frequency. The relative frequency change is +one plus an oscillator.; +#X text 439 626 updated for Pd version 0.39; +#X text 45 185 The table below holds 6 cycles of vibrato with small +variations to get a not-exactly-repeating vibrato. We thus have to +divide vibrato frequency by six. You can just use a sine or triangle +wave if you prefer.; +#X text 573 426 <-- middle C; +#X connect 0 0 5 0; +#X connect 1 0 2 0; +#X connect 1 0 2 1; +#X connect 2 0 9 0; +#X connect 3 0 10 0; +#X connect 5 0 6 0; +#X connect 5 1 3 0; +#X connect 6 0 42 0; +#X connect 7 0 8 0; +#X connect 8 0 43 0; +#X connect 8 0 43 1; +#X connect 9 0 7 0; +#X connect 10 0 11 0; +#X connect 11 0 12 0; +#X connect 12 0 42 1; +#X connect 18 0 1 0; +#X connect 18 0 1 1; +#X connect 19 0 18 1; +#X connect 21 0 24 0; +#X connect 22 0 23 0; +#X connect 23 0 21 0; +#X connect 24 0 19 0; +#X connect 25 0 30 0; +#X connect 30 0 24 1; +#X connect 42 0 18 0; diff --git a/pd/doc/3.audio.examples/H01.low-pass.pd b/pd/doc/3.audio.examples/H01.low-pass.pd new file mode 100644 index 00000000..81a713b8 --- /dev/null +++ b/pd/doc/3.audio.examples/H01.low-pass.pd @@ -0,0 +1,185 @@ +#N canvas 97 42 601 612 12; +#X obj 72 411 mtof; +#X floatatom 72 388 5 0 0 0 - #0-pit -; +#X obj 41 542 output~; +#X obj 41 457 lop~; +#X obj 42 354 noise~; +#X text 124 387 <-- cutoff (pitch units); +#X text 135 434 <-- cutoff (Hertz); +#X floatatom 72 436 5 0 0 0 - - -; +#X text 348 582 updated for Pd version 0.39; +#X text 88 459 low-pass filter; +#X obj 130 535 tabwrite~ H01-graph; +#X obj 130 510 metro 250; +#X obj 130 490 tgl 15 0 empty empty empty 0 -6 0 8 -262144 -1 -1 0 +1; +#X text 148 487 graphing on/off; +#N canvas 0 0 450 300 graph2 0; +#X array H01-graph 882 float 3; +#A 0 -0.107788 -0.0695636 -0.0991016 -0.104581 -0.0683972 -0.0547128 +-0.0857414 -0.0731684 -0.0892636 -0.115914 -0.0935128 -0.0572466 -0.0387586 +-0.0429956 -0.03826 -0.0628797 -0.0383263 -0.0720175 -0.0923909 -0.0707558 +-0.0792164 -0.102187 -0.0888189 -0.119908 -0.083863 -0.0677126 -0.0554309 +-0.044719 -0.0248649 -0.0482707 -0.0692472 -0.103905 -0.101273 -0.117807 +-0.100956 -0.0905779 -0.0676211 -0.0299763 -0.0190183 0.00623894 -0.000664497 +0.0291359 0.0310484 0.0412564 0.0375735 0.0676889 0.0348717 0.00747152 +0.0416666 0.0529021 0.0418099 0.0405759 0.0303367 -0.00428127 0.0140712 +-0.0111072 0.0243947 -0.0104408 -0.0142505 -0.0287291 -0.0119835 0.00876151 +-0.0281321 -0.0325635 -0.0618363 -0.0379124 -0.0447592 -0.0507954 -0.0403398 +-0.0277581 -0.00226383 0.000989536 -0.0323217 -0.0164512 -0.0156964 +-0.0436928 -0.045223 -0.0706908 -0.0382667 -0.00177098 0.0290649 0.0149072 +0.0483574 0.0453535 0.0100187 -0.00270613 0.0298578 0.0470317 0.0301263 +0.0478455 0.0134859 0.0488288 0.0766369 0.0916206 0.11869 0.0944563 +0.102745 0.086215 0.0845207 0.0662227 0.0609466 0.0952278 0.0771313 +0.103073 0.101067 0.0915918 0.100309 0.0651311 0.0553397 0.0623315 +0.050316 0.0844677 0.0996978 0.0715106 0.084598 0.0947672 0.115172 +0.134093 0.118854 0.106047 0.120693 0.0961966 0.0571329 0.0854602 0.084371 +0.0538877 0.0744577 0.0563968 0.0753962 0.0748331 0.0605493 0.0795627 +0.0600295 0.0432455 0.0582205 0.0920203 0.0640656 0.0253824 -0.008527 +-0.0243436 -0.0588714 -0.0239946 0.00784105 0.0119875 0.0161209 0.00780566 +0.00216991 -0.0288565 -0.0521791 -0.0658445 -0.0868191 -0.0673713 -0.0889776 +-0.0546807 -0.0256506 -0.0375237 -0.0118962 -0.0477717 -0.0384217 -0.0385089 +-0.0696784 -0.098759 -0.121121 -0.127174 -0.157189 -0.121443 -0.0989412 +-0.0615983 -0.0711882 -0.0760313 -0.0566161 -0.056104 -0.0875121 -0.0734271 +-0.037525 -0.0681574 -0.0689616 -0.0900591 -0.0574559 -0.04051 -0.0333117 +-0.0260634 -0.0202531 -0.0302473 -0.0346772 -0.052936 -0.0798849 -0.0780231 +-0.111591 -0.112165 -0.129226 -0.11253 -0.138539 -0.122338 -0.138645 +-0.132606 -0.112523 -0.139122 -0.169654 -0.132431 -0.136376 -0.130106 +-0.110972 -0.113595 -0.131592 -0.141568 -0.108734 -0.075847 -0.0711363 +-0.0525791 -0.0216604 -0.0196736 -0.0186081 -0.0186695 -0.00602199 +0.0257979 0.0132076 0.0225488 0.00748564 0.0165994 0.00166184 -0.00116405 +0.0028765 0.01807 0.0157059 0.0473739 0.0708991 0.0862786 0.0650413 +0.038138 0.015989 0.0521245 0.0605891 0.0431341 0.00429233 0.028138 +0.00477928 0.00181729 -0.028107 -0.0360127 -0.00712468 -0.0312668 -0.0523252 +-0.0479352 -0.0513783 -0.0250772 -0.0142933 -0.047864 -0.0252179 -0.0219197 +0.0153334 0.0518051 0.082624 0.0535017 0.0535462 0.0506847 0.0717359 +0.0774448 0.0591473 0.0602611 0.0708395 0.0654832 0.0261038 0.0107588 +0.00770543 0.0203729 0.033363 0.029335 0.0483838 0.0607855 0.0245724 +0.0550305 0.0593506 0.0753188 0.081294 0.096557 0.117197 0.105438 0.111979 +0.0953627 0.0978146 0.084516 0.0952146 0.117297 0.0851524 0.0863281 +0.049295 0.0757788 0.0866482 0.0738062 0.0984422 0.0885168 0.116305 +0.0949217 0.0562471 0.0898681 0.0643755 0.0681146 0.0863296 0.0516047 +0.0595782 0.0605373 0.0295923 0.0568693 0.0749412 0.0804035 0.108818 +0.0786603 0.0506026 0.0129134 0.0381891 0.0305477 0.0364073 0.0411764 +0.0721042 0.0629199 0.03039 0.0474877 0.0100055 0.0283331 0.0424028 +0.0700528 0.0932837 0.116089 0.146493 0.171112 0.198628 0.1636 0.135356 +0.164266 0.144544 0.132615 0.128501 0.129495 0.141165 0.145633 0.141941 +0.170706 0.193988 0.204823 0.228202 0.219125 0.204054 0.227319 0.231326 +0.230171 0.204664 0.230591 0.189557 0.202459 0.184563 0.212896 0.202201 +0.221436 0.214395 0.195221 0.209657 0.214416 0.202139 0.222888 0.237836 +0.245874 0.22457 0.194835 0.159835 0.142986 0.120742 0.119331 0.147719 +0.17693 0.157802 0.153323 0.151851 0.155677 0.148854 0.139333 0.145233 +0.166518 0.140436 0.150237 0.126701 0.135908 0.166416 0.15391 0.152768 +0.181048 0.149057 0.136385 0.1213 0.144767 0.113465 0.0980506 0.0852771 +0.106682 0.130461 0.10524 0.0793894 0.07123 0.0447812 0.0792345 0.0479509 +0.0700904 0.0308896 0.0279068 0.0312166 0.010152 -0.00943106 0.0010242 +-0.00752998 0.0143407 0.0027725 0.033508 0.0621824 0.0643498 0.0827609 +0.113321 0.11629 0.139206 0.101752 0.0988734 0.107286 0.128068 0.14154 +0.148363 0.124029 0.0968996 0.127442 0.100244 0.0940884 0.0805303 0.103963 +0.0874826 0.0588413 0.0720198 0.0853478 0.0902383 0.0788942 0.0475014 +0.0707652 0.0384297 0.0538394 0.0763012 0.0483987 0.0713554 0.0473328 +0.0415702 0.0532321 0.0475937 0.0208587 0.0030926 0.00438177 -0.0204396 +-0.00825569 0.0180096 0.0456204 0.0765333 0.0938012 0.110089 0.115665 +0.13934 0.144259 0.155082 0.164549 0.192087 0.159342 0.176142 0.149727 +0.174968 0.170935 0.134127 0.123663 0.11653 0.113447 0.102327 0.0764594 +0.0887578 0.079355 0.0692447 0.0727442 0.0913222 0.115159 0.137636 +0.154978 0.176904 0.156243 0.13039 0.104399 0.0853428 0.0666318 0.0615526 +0.0907602 0.0502914 0.0434091 0.00788628 -0.0191843 -0.0395026 -0.0596938 +-0.0723036 -0.0806951 -0.0861116 -0.0864571 -0.0488058 -0.0711986 -0.0797166 +-0.0688114 -0.0318625 -0.0673463 -0.0444878 -0.0250519 -0.024727 -0.0310858 +-0.00561093 -0.0207001 -0.0340927 -0.0551734 -0.0817888 -0.0705976 +-0.0835859 -0.0866976 -0.0565736 -0.0797509 -0.0968247 -0.0655236 -0.0760219 +-0.0670947 -0.0342146 -0.0274503 -0.0263804 -0.0317333 -0.039663 -0.0119034 +-0.046866 -0.0359958 -0.0318836 -0.0499625 -0.0574402 -0.029796 0.0028338 +-0.0262898 -0.041154 -0.0473188 -0.0255545 -0.058172 -0.0601881 -0.0914168 +-0.102286 -0.135733 -0.13837 -0.13175 -0.139201 -0.160906 -0.136196 +-0.11435 -0.073056 -0.0694626 -0.0599314 -0.0349573 -0.00661064 -0.0128436 +-0.0368892 -0.00783622 -0.0285016 -0.0257515 -0.000656539 0.000578916 +0.00997914 0.0309158 0.00448781 -0.0276183 -0.00975017 -0.0431335 -0.0420573 +-0.0318631 -0.0461821 -0.0493957 -0.0468264 -0.0278063 -0.0239267 -0.0240269 +-0.0446192 -0.0791041 -0.0634024 -0.0949552 -0.122094 -0.130089 -0.110653 +-0.07832 -0.0717672 -0.0448359 -0.0454325 -0.075843 -0.0655465 -0.0499949 +-0.0848139 -0.107986 -0.0831531 -0.0721088 -0.103859 -0.0650817 -0.0753315 +-0.0991717 -0.072808 -0.0810555 -0.0679525 -0.0566175 -0.0827188 -0.0822597 +-0.0497494 -0.0154982 -0.00131288 0.0318942 -0.00235687 -0.0344436 +-0.0249813 -0.00212817 0.0348011 0.0207401 0.00218581 -0.0346692 -0.000621661 +-0.0106329 -0.0261485 0.00856931 -0.0171581 0.0152674 0.0466481 0.0456615 +0.0728295 0.0601254 0.0639082 0.0949887 0.09166 0.118261 0.120631 0.120818 +0.150657 0.154468 0.134964 0.0965974 0.0907992 0.069314 0.0611587 0.0707784 +0.0627047 0.0717109 0.0659585 0.0296832 0.0352495 0.00141861 0.010894 +0.0426848 0.0419218 0.0141017 0.0413311 0.037778 0.0154291 0.0312945 +0.00510286 -0.00271059 -0.0291284 -0.045397 -0.0762688 -0.0445058 -0.057707 +-0.0779557 -0.0735523 -0.0922772 -0.0727918 -0.0429784 -0.00911861 +-0.0379944 -0.0658339 -0.0784915 -0.0792981 -0.0453014 -0.0197867 -0.00123178 +0.000799734 -0.00204599 0.0349492 0.0623098 0.0770006 0.0882193 0.0484045 +0.0760622 0.0945022 0.0567368 0.0286078 0.00189384 0.0315546 0.0374527 +0.0395075 0.0591211 0.0415475 0.0732162 0.0588977 0.0850963 0.0465228 +0.0698241 0.0407602 0.0431113 0.0065717 0.00936337 0.0222241 0.0327647 +0.0270807 -0.0111891 0.0063837 -0.0086459 -0.0364951 -0.0200965 -0.0318325 +-0.0576028 -0.0557316 -0.0675803 -0.0887475 -0.0980934 -0.0881446 -0.117229 +-0.125822 -0.13378 -0.142539 -0.108397 -0.13497 -0.138471 -0.164523 +-0.174647 -0.18636 -0.157472 -0.148646 -0.108121 -0.104372 -0.0695942 +-0.0542974 -0.0701001 -0.100999 -0.0658883 -0.0947834 -0.113894 -0.0981114 +-0.108426 -0.100378 -0.102227 -0.0818266 -0.103135 -0.0720306 -0.0440222 +-0.0219618 -0.0453231 -0.019184 0.0157131 -0.013545 -0.0248696 -0.0166098 +-0.0489199 -0.0269982 -0.0224125 -0.0413912 -0.0728588 -0.0586017 -0.0349842 +-0.0338855 -0.0588961 -0.0928709 -0.11376 -0.0790886 -0.100094 -0.126293 +-0.10676 -0.136216 -0.109541 -0.136053 -0.112742 -0.136117 -0.146529 +-0.156998 -0.163319 -0.137112 -0.146644 -0.138866 -0.159482 -0.185248 +-0.206002 -0.16925 -0.178855 -0.140085 -0.105426 -0.095303 -0.0736452 +-0.066341 -0.0689736 -0.0914969 -0.0725721 -0.0824288 -0.049098 -0.0139474 +-0.00957104 0.0134051 -0.0091349 0.00555033 0.0117049 -0.0230348 -0.0545547 +-0.050228 -0.0431037 -0.0668625 -0.029803 -0.0551605 -0.0175891 -0.0435808 +-0.0240586 -0.0455508 -0.00746894 0.0213663 0.0569028 0.0190693 0.000740271 +0.000412262 -0.0233437 -0.0205415 -0.0240432 0.00448952 0.00916993 +0.00155166 -0.00567939 -0.00725616 0.0138388 0.0162082 -0.00138934 +-0.0077004 -0.0261998 -0.0100701 -0.0337348 -0.0154704 -0.0291058 -0.0299364 +-0.00924212 0.0247502 -0.0060416 -0.0118114 -0.0158459 0.0158545 -0.00827235 +-0.00602365 -0.0132283 0.0105079 0.0432025 0.0698796 0.0576105 0.0538253 +0.066991 0.0715161 0.0405482 0.0741857 0.0802094 0.113967 0.126283 +0.111464 0.0926309 0.0545991 0.0568134 0.0770984 0.0533353 0.0142316 +-0.0181225 0.00490977 0.0275315 0.0202685 0.00414232 0.0273551 0.0158572 +-0.00476758 -0.0362654 -0.0701252 -0.0547324 -0.0708724 -0.0970369 +-0.099428 -0.102544 -0.0736354 -0.0556618 -0.0863601; +#X coords 0 1 882 -1 200 140 1; +#X restore 384 386 graph; +#X text 408 528 --- 0.02 sec ---; +#X text 28 30 This and the following patches show how to use filters +in Pd \, starting with the simplest one: the one-pole low-pass filter. +Here we test it with an input of white noise. The lop~ object does +the filtering. Its left inlet takes an audio signal to be filtered +\, and its right inlet takes messages to set its cutoff frequency in +Hertz.; +#X text 26 129 The lop~ object is normalized to pass DC (the lowest +frequency) with a gain of one. Higher frequencies are progressively +more and more attenuated. The lower the cutoff frequency \, the lower +the total power of the filtered noise. If you graph the output you'll +see that the waveform gets smoother (and smaller overall) as the cutoff +frequency is lowered.; +#X text 28 243 At the cutoff frequency the gain is about -3 dB \, and +above that the gain drops a further 6 dB per octave. (Sometimes one +uses the word "rolloff" instead of "cutoff" to emphasize the gradual +way the gain drops off with frequency.); +#X text 108 353 white noise \, test signal; +#X text 185 6 ONE-POLE LOW-PASS FILTER; +#N canvas 0 0 450 300 loadbang 0; +#X obj 85 16 loadbang; +#X obj 85 40 bng 15 250 50 0 empty empty empty 0 -6 0 8 -262144 -1 +-1; +#X obj 85 59 f \$0; +#X text 18 179 boxes.; +#X text 16 161 This subpatch loads initial values in number; +#X msg 84 83 \; \$1-pit 60; +#X connect 0 0 1 0; +#X connect 1 0 2 0; +#X connect 2 0 5 0; +#X restore 129 582 pd loadbang; +#X connect 0 0 7 0; +#X connect 1 0 0 0; +#X connect 3 0 2 0; +#X connect 3 0 2 1; +#X connect 3 0 10 0; +#X connect 4 0 3 0; +#X connect 7 0 3 1; +#X connect 11 0 10 0; +#X connect 12 0 11 0; diff --git a/pd/doc/3.audio.examples/H02.high-pass.pd b/pd/doc/3.audio.examples/H02.high-pass.pd new file mode 100644 index 00000000..3342c64e --- /dev/null +++ b/pd/doc/3.audio.examples/H02.high-pass.pd @@ -0,0 +1,173 @@ +#N canvas 29 10 607 643 12; +#X obj 38 563 output~; +#X text 336 611 updated for Pd version 0.39; +#X obj 126 544 metro 250; +#X obj 126 524 tgl 15 0 empty empty empty 0 -6 0 8 -262144 -1 -1 0 +1; +#X text 144 521 graphing on/off; +#N canvas 0 0 450 300 graph2 0; +#X array H02-graph 882 float 3; +#A 0 0.86084 0.876465 0.891113 0.904785 0.917725 0.929688 0.940918 +0.950928 0.960205 0.968506 0.97583 0.982178 0.987793 0.992188 0.995605 +0.998047 0.999512 1 0.999756 0.998291 0.99585 0.992432 0.988037 0.982666 +0.976318 0.968994 0.960938 0.95166 0.94165 0.930664 0.918701 0.905762 +0.89209 0.877441 0.862061 0.845703 0.828613 0.810547 0.791748 0.772217 +0.751953 0.730957 0.709229 0.686768 0.663574 0.639893 0.615479 0.590576 +0.564941 0.538818 0.511963 0.484863 0.457275 0.429199 0.400635 0.371826 +0.342529 0.312744 0.282959 0.252686 0.222168 0.19165 0.160645 0.129639 +0.0986328 0.0673828 0.0358887 0.00463867 -0.0266113 -0.0581055 -0.0893555 +-0.120361 -0.151611 -0.182373 -0.213135 -0.243652 -0.273926 -0.303955 +-0.33374 -0.363037 -0.39209 -0.420654 -0.448975 -0.476807 -0.50415 +-0.530762 -0.557129 -0.583008 -0.608154 -0.632568 -0.656738 -0.679932 +-0.702637 -0.724609 -0.74585 -0.766357 -0.786133 -0.805176 -0.823242 +-0.840576 -0.857178 -0.873047 -0.887939 -0.901855 -0.915039 -0.927246 +-0.938477 -0.94873 -0.958252 -0.966797 -0.974365 -0.980957 -0.986572 +-0.991211 -0.994873 -0.997559 -0.999268 -1 -0.999756 -0.998535 -0.996338 +-0.993164 -0.989014 -0.983887 -0.977783 -0.970947 -0.962891 -0.953857 +-0.944092 -0.933105 -0.921387 -0.908936 -0.895264 -0.880859 -0.865479 +-0.849365 -0.83252 -0.814697 -0.796143 -0.776855 -0.756592 -0.73584 +-0.714111 -0.691895 -0.668945 -0.645264 -0.621094 -0.596191 -0.570801 +-0.544678 -0.518066 -0.491211 -0.463623 -0.435547 -0.407227 -0.378418 +-0.349121 -0.31958 -0.289795 -0.259521 -0.229248 -0.198486 -0.167725 +-0.136719 -0.105713 -0.0744629 -0.0432129 -0.0117188 0.0195312 0.0507812 +0.0822754 0.113281 0.144531 0.175293 0.206055 0.236816 0.26709 0.297119 +0.326904 0.356445 0.385498 0.414307 0.442627 0.470459 0.497803 0.524902 +0.55127 0.577148 0.602539 0.627197 0.651367 0.674805 0.69751 0.719727 +0.740967 0.761719 0.781738 0.800781 0.819336 0.836914 0.853516 0.869385 +0.884521 0.898682 0.912109 0.924561 0.936035 0.946533 0.956299 0.964844 +0.972656 0.979492 0.985352 0.990234 0.994141 0.99707 0.999023 1 1 0.999023 +0.99707 0.994141 0.990234 0.985352 0.979248 0.972412 0.964844 0.956055 +0.946289 0.935791 0.924316 0.911865 0.898438 0.884277 0.869141 0.853271 +0.836426 0.818848 0.800537 0.78125 0.76123 0.740723 0.719238 0.697021 +0.674316 0.650879 0.626709 0.601807 0.57666 0.550781 0.52417 0.497314 +0.469971 0.441895 0.413574 0.38501 0.355713 0.326416 0.296631 0.266357 +0.236084 0.205566 0.174805 0.143799 0.112793 0.081543 0.050293 0.0187988 +-0.0124512 -0.0437012 -0.0749512 -0.106201 -0.137451 -0.168457 -0.199219 +-0.229736 -0.260254 -0.290283 -0.320068 -0.349609 -0.378906 -0.407715 +-0.436035 -0.464111 -0.491699 -0.518799 -0.545166 -0.571289 -0.59668 +-0.621582 -0.645752 -0.669434 -0.692383 -0.7146 -0.736328 -0.75708 +-0.7771 -0.796631 -0.815186 -0.832764 -0.849854 -0.865967 -0.881104 +-0.895508 -0.90918 -0.921631 -0.93335 -0.944092 -0.954102 -0.962891 +-0.970947 -0.978027 -0.984131 -0.989258 -0.993408 -0.996582 -0.998779 +-0.999756 -1 -0.999268 -0.997559 -0.994873 -0.991211 -0.986328 -0.980713 +-0.974121 -0.966553 -0.958008 -0.94873 -0.938232 -0.927002 -0.914551 +-0.901611 -0.887451 -0.872559 -0.856934 -0.840332 -0.822998 -0.804688 +-0.785645 -0.765869 -0.745361 -0.724121 -0.702148 -0.679443 -0.65625 +-0.63208 -0.607666 -0.582275 -0.556641 -0.530273 -0.503418 -0.476074 +-0.448242 -0.420166 -0.391357 -0.362305 -0.333008 -0.303223 -0.273193 +-0.24292 -0.212402 -0.181885 -0.150879 -0.119873 -0.088623 -0.057373 +-0.026123 0.00537109 0.0366211 0.0678711 0.0991211 0.130371 0.161377 +0.192139 0.2229 0.253418 0.283447 0.313477 0.343018 0.372314 0.401123 +0.429688 0.457764 0.485352 0.512695 0.539307 0.56543 0.591064 0.615967 +0.640381 0.664062 0.687256 0.709717 0.731445 0.752441 0.772705 0.792236 +0.811035 0.828857 0.845947 0.862305 0.877686 0.892334 0.906006 0.918945 +0.930908 0.941895 0.951904 0.961182 0.969238 0.976562 0.98291 0.988037 +0.992432 0.99585 0.998291 0.999756 1 0.999512 0.998047 0.995605 0.991943 +0.987549 0.982178 0.97583 0.968506 0.960205 0.950928 0.940674 0.929443 +0.91748 0.904541 0.890869 0.876221 0.860596 0.844238 0.826904 0.808838 +0.790039 0.770508 0.75 0.729004 0.707275 0.684814 0.661621 0.637695 +0.613281 0.588135 0.5625 0.536377 0.509521 0.482422 0.45459 0.426514 +0.397949 0.369141 0.339844 0.310059 0.280029 0.25 0.219482 0.188721 +0.157959 0.126953 0.0957031 0.0644531 0.0332031 0.00170898 -0.029541 +-0.060791 -0.092041 -0.123291 -0.154297 -0.185303 -0.21582 -0.246338 +-0.276611 -0.306641 -0.336426 -0.365723 -0.394775 -0.42334 -0.451416 +-0.479248 -0.506592 -0.533203 -0.55957 -0.585205 -0.610352 -0.63501 +-0.658691 -0.682129 -0.70459 -0.726562 -0.747803 -0.768066 -0.787842 +-0.806885 -0.824951 -0.842285 -0.858643 -0.874268 -0.88916 -0.903076 +-0.916016 -0.928223 -0.939453 -0.949707 -0.958984 -0.967529 -0.974854 +-0.981445 -0.987061 -0.991455 -0.995117 -0.997803 -0.999512 -1 -0.999756 +-0.998535 -0.996094 -0.99292 -0.98877 -0.983398 -0.977295 -0.970215 +-0.962158 -0.953125 -0.943115 -0.932129 -0.92041 -0.907715 -0.894043 +-0.879639 -0.864258 -0.8479 -0.831055 -0.812988 -0.794434 -0.774902 +-0.754883 -0.733887 -0.712158 -0.689941 -0.666748 -0.643066 -0.618896 +-0.593994 -0.568359 -0.542236 -0.515625 -0.488525 -0.460938 -0.433105 +-0.404541 -0.375732 -0.346436 -0.316895 -0.286865 -0.256836 -0.226318 +-0.195801 -0.165039 -0.134033 -0.102783 -0.0715332 -0.0402832 -0.0090332 +0.0224609 0.0537109 0.0849609 0.116211 0.147217 0.178223 0.208984 0.239502 +0.269775 0.299805 0.32959 0.359131 0.388184 0.416748 0.445068 0.4729 +0.500244 0.527344 0.553711 0.579346 0.604736 0.629395 0.65332 0.676758 +0.699463 0.72168 0.74292 0.763672 0.783447 0.80249 0.820801 0.838379 +0.85498 0.87085 0.885742 0.899902 0.913086 0.925537 0.937012 0.94751 +0.957031 0.965576 0.973389 0.97998 0.98584 0.990723 0.994385 0.997314 +0.999023 1 1 0.998779 0.996826 0.993652 0.989746 0.984619 0.97876 0.971924 +0.963867 0.955078 0.945312 0.934814 0.923096 0.910645 0.897217 0.882812 +0.867676 0.851807 0.834961 0.817139 0.798828 0.779541 0.759521 0.73877 +0.717285 0.695068 0.672119 0.648682 0.624512 0.599609 0.574219 0.54834 +0.521729 0.494873 0.467285 0.439453 0.411133 0.382324 0.353027 0.32373 +0.293701 0.263672 0.233398 0.202637 0.171875 0.140869 0.109863 0.0786133 +0.0473633 0.0161133 -0.0153809 -0.0466309 -0.0778809 -0.109131 -0.140137 +-0.171143 -0.201904 -0.232666 -0.262939 -0.292969 -0.322754 -0.352295 +-0.381592 -0.4104 -0.438721 -0.466553 -0.494141 -0.52124 -0.547607 +-0.57373 -0.599121 -0.623779 -0.647949 -0.671631 -0.694336 -0.716797 +-0.738281 -0.759033 -0.779053 -0.79834 -0.81665 -0.834473 -0.851318 +-0.867432 -0.882568 -0.896729 -0.910156 -0.922852 -0.934326 -0.945068 +-0.954834 -0.963867 -0.97168 -0.978516 -0.984619 -0.989502 -0.993652 +-0.996826 -0.998779 -1 -1 -0.999268 -0.997314 -0.994629 -0.990723 -0.98584 +-0.980225 -0.973633 -0.96582 -0.957275 -0.947754 -0.937256 -0.925781 +-0.913574 -0.900391 -0.88623 -0.871338 -0.855469 -0.838867 -0.821289 +-0.802979 -0.783936 -0.76416 -0.743408 -0.722168 -0.700195 -0.67749 +-0.654053 -0.629883 -0.605225 -0.580078 -0.554199 -0.527832 -0.500977 +-0.473633 -0.445801 -0.41748 -0.388916 -0.359863 -0.330322 -0.300537 +-0.270508 -0.240234 -0.209717 -0.178955 -0.147949 -0.116943 -0.0856934 +-0.0544434 -0.0231934 0.00805664 0.0395508 0.0708008 0.102051 0.133057 +0.164062 0.195068 0.225586 0.256104 0.286133 0.316162 0.345703 0.375 +0.403809 0.432373 0.460449 0.488037 0.515137 0.541748 0.567871 0.593262 +0.618164 0.642578 0.66626 0.689209 0.71167 0.733398 0.754395 0.774414 +0.793945 0.812744 0.830566 0.847656 0.86377 0.87915 0.893555 0.907227 +0.919922 0.931885 0.942871 0.952881 0.961914 0.969971 0.977051 0.983398 +0.988525 0.99292 0.996094 0.998535 0.999756 1 0.999512 0.997803 0.995361 +0.991699 0.987061 0.981689 0.975098 0.967773 0.959229 0.949951 0.939697 +0.928467 0.916504 0.90332 0.889404 0.874756 0.859131 0.842529 0.825439 +0.807129 0.78833 0.768555 0.748291 0.727051 0.705078 0.682617 0.659424 +0.635498 0.611084 0.585938 0.560059 0.533936 0.50708 0.47998 0.452148 +0.424072 0.395508 0.366455 0.337158 0.307373 0.277344 0.24707 0.216553 +0.186035 0.155029 0.124023 0.0927734 0.0615234 0.0302734 -0.000976562 +-0.0324707 -0.0637207 -0.0949707 -0.125977 -0.157227 -0.187988 -0.21875 +-0.249268 -0.279297 -0.309326 -0.339111 -0.368408; +#X coords 0 1 882 -1 200 140 1; +#X restore 381 407 graph; +#X text 405 549 --- 0.02 sec ---; +#X text 24 31 Many synthesis algorithms and transformations can have +outputs with a zero-freqency component (commonly called DC for "direct +current"). These are inaudible and sometimes cause distortion in audio +output devices \, or when converting to fixed-point soundfile formats. +It is often desirable to filter an audio signal to remove its DC component. +; +#X text 23 147 The simplest way to do this is to use a one-pole low-pass +filter \, tuned to a low frequency such as 3 Hertz \, and to subtract +its output from the original. This difference is called a one-pole +\, one-zero high-pass filter \, and it is used so often that Pd provides +one in the "hip~" object.; +#X obj 38 354 +~ 1; +#X obj 37 491 hip~ 5; +#X text 100 491 high-pass filter; +#X floatatom 86 450 5 0 0 0 - - -; +#X msg 86 380 0; +#X text 122 329 sinusoidal test signal; +#X text 83 354 add "DC"; +#X text 124 380 zero for no filtering; +#X msg 86 403 3; +#X text 121 404 3 (or so) to remove DC; +#X text 126 427 higher freqencies affect; +#X text 166 443 the audible part of; +#X text 166 459 the signal as well.; +#X obj 38 329 osc~ 220; +#X msg 86 426 220; +#X text 23 229 The simplest way to do this is to use a one-pole low-pass +filter \, tuned to a low frequency such as 3 Hertz \, and to subtract +its output from the original. This difference is computed by a one-pole +\, one-zero high-pass filter. These are used so often that Pd provides +one in the "hip~" object.; +#X text 131 4 ONE-POLE \, ONE-ZERO HIGH-PASS FILTER; +#X obj 126 569 tabwrite~ H02-graph; +#X connect 2 0 26 0; +#X connect 3 0 2 0; +#X connect 9 0 10 0; +#X connect 10 0 0 0; +#X connect 10 0 0 1; +#X connect 10 0 26 0; +#X connect 12 0 10 1; +#X connect 13 0 12 0; +#X connect 17 0 12 0; +#X connect 22 0 9 0; +#X connect 23 0 12 0; diff --git a/pd/doc/3.audio.examples/H03.band-pass.pd b/pd/doc/3.audio.examples/H03.band-pass.pd new file mode 100644 index 00000000..976fee54 --- /dev/null +++ b/pd/doc/3.audio.examples/H03.band-pass.pd @@ -0,0 +1,57 @@ +#N canvas 44 0 604 533 12; +#X obj 43 278 mtof; +#X floatatom 43 255 5 0 150 0 - #0-pit -; +#X obj 32 446 output~; +#X obj 32 225 noise~; +#X text 95 254 <-- cutoff (pitch units); +#X text 106 301 <-- cutoff (Hertz); +#X floatatom 43 303 5 0 0 0 - - -; +#X text 330 494 updated for Pd version 0.39; +#X obj 121 414 metro 250; +#X obj 121 394 tgl 15 0 empty empty empty 0 -6 0 8 -262144 -1 -1 0 +1; +#X text 139 391 graphing on/off; +#N canvas 0 0 450 300 graph2 0; +#X array H03-graph 882 float 2; +#X coords 0 1 882 -1 200 140 1; +#X restore 375 290 graph; +#X text 399 432 --- 0.02 sec ---; +#X text 98 224 white noise \, test signal; +#X obj 32 361 bp~; +#X text 73 363 band-pass filter; +#X obj 121 439 tabwrite~ H03-graph; +#X floatatom 54 331 5 0 1000 0 - #0-q -; +#X text 106 329 <-- q; +#N canvas 0 0 450 300 loadbang 0; +#X obj 85 16 loadbang; +#X obj 85 40 bng 15 250 50 0 empty empty empty 0 -6 0 8 -262144 -1 +-1; +#X obj 85 59 f \$0; +#X text 18 179 boxes.; +#X text 16 161 This subpatch loads initial values in number; +#X msg 85 83 \; \$1-pit 72 \; \$1-q 1; +#X connect 0 0 1 0; +#X connect 1 0 2 0; +#X connect 2 0 5 0; +#X restore 139 482 pd loadbang; +#X text 154 8 RESONANT (BAND-PASS) FILTER; +#X text 26 129 The two controls specify \, first \, the center frequency +\, and second \, the sharpness of the filter \, commonly called "q". +If you increase q to 10 or 20 \, you will see a drop in total signal +power \, and moreover \, you'll see and hear the resonant frequency +more clearly in the result.; +#X text 28 30 A simple resonant band-pass filter is provided in the +bp~ object. Resonant filters can be tuned to a specific "center frequency" +and then will pass that frequency while attenuating other frequencies +(the further from the center frequency \, the more attenuation). This +patch uses a white noise source to demonstrate bp~.; +#X connect 0 0 6 0; +#X connect 1 0 0 0; +#X connect 3 0 14 0; +#X connect 6 0 14 1; +#X connect 8 0 16 0; +#X connect 9 0 8 0; +#X connect 14 0 2 0; +#X connect 14 0 2 1; +#X connect 14 0 16 0; +#X connect 17 0 14 2; diff --git a/pd/doc/3.audio.examples/H04.filter.sweep.pd b/pd/doc/3.audio.examples/H04.filter.sweep.pd new file mode 100644 index 00000000..e4f3cf09 --- /dev/null +++ b/pd/doc/3.audio.examples/H04.filter.sweep.pd @@ -0,0 +1,58 @@ +#N canvas 360 15 553 524 12; +#X floatatom 44 146 5 0 150 0 - #0-pitch -; +#X text 126 9 SWEEPING FILTERS; +#X obj 44 193 phasor~; +#X obj 59 351 +~; +#X floatatom 81 326 5 0 100 0 - #0-offset -; +#X floatatom 60 222 5 0 0 0 - #0-speed -; +#X floatatom 82 273 5 0 100 0 - #0-depth -; +#X floatatom 75 404 5 0 1000 0 - #0-q -; +#X obj 44 426 vcf~; +#X obj 59 375 tabread4~ mtof; +#X text 127 403 <-- Q (selectivity); +#X text 115 182 sawtooth; +#X text 116 198 oscillator; +#X text 112 221 <-- sweep speed; +#X text 137 245 LFO for sweep; +#X text 134 274 <-- sweep depth; +#X text 131 326 <-- base center frequency; +#X text 103 350 add base to sweep; +#X text 192 375 convert to Hz.; +#X text 97 144 <-- pitch; +#X obj 43 457 output~; +#X obj 44 169 mtof; +#X obj 60 244 phasor~; +#X obj 60 298 *~; +#X text 294 496 updated for Pd version 0.39; +#N canvas 706 247 450 300 startup 0; +#X obj 85 16 loadbang; +#X obj 85 40 bng 15 250 50 0 empty empty empty 0 -6 0 8 -262144 -1 +-1; +#X obj 85 59 f \$0; +#X text 9 257 boxes.; +#X text 18 209 This subpatch loads initial values in number; +#X msg 85 83 \; \$1-pitch 48 \; \$1-speed -2 \; \$1-depth 27 \; \$1-offset +56 \; \$1-q 2; +#X connect 0 0 1 0; +#X connect 1 0 2 0; +#X connect 2 0 5 0; +#X restore 168 491 pd startup; +#X text 14 109 Note the different effects of negative and positive +sweep speeds.; +#X text 13 32 If you want actively changing center frequencies \, use +"vcf~" instead of "bp~". The vcf~ module takes an audio signal to set +center frequency. (Q is still set by messages though.) Vcf is computationally +somewhat more expensive than bp~.; +#X connect 0 0 21 0; +#X connect 2 0 8 0; +#X connect 3 0 9 0; +#X connect 4 0 3 1; +#X connect 5 0 22 0; +#X connect 6 0 23 1; +#X connect 7 0 8 2; +#X connect 8 0 20 0; +#X connect 8 0 20 1; +#X connect 9 0 8 1; +#X connect 21 0 2 0; +#X connect 22 0 23 0; +#X connect 23 0 3 0; diff --git a/pd/doc/3.audio.examples/H05.filter.floyd.pd b/pd/doc/3.audio.examples/H05.filter.floyd.pd new file mode 100644 index 00000000..2187f05d --- /dev/null +++ b/pd/doc/3.audio.examples/H05.filter.floyd.pd @@ -0,0 +1,132 @@ +#N canvas 708 41 555 646 12; +#N canvas 0 0 600 392 conversion-tables 0; +#N canvas 0 0 450 300 graph1 0; +#X array dbtorms 123 float 1; +#A 0 0 0 1.25893e-05 1.41254e-05 1.58489e-05 1.77828e-05 1.99526e-05 +2.23872e-05 2.51189e-05 2.81838e-05 3.16228e-05 3.54813e-05 3.98107e-05 +4.46684e-05 5.01187e-05 5.62341e-05 6.30957e-05 7.07946e-05 7.94328e-05 +8.91251e-05 1e-04 0.000112202 0.000125893 0.000141254 0.000158489 0.000177828 +0.000199526 0.000223872 0.000251189 0.000281838 0.000316228 0.000354813 +0.000398107 0.000446684 0.000501187 0.000562341 0.000630957 0.000707946 +0.000794328 0.000891251 0.001 0.00112202 0.00125893 0.00141254 0.00158489 +0.00177828 0.00199526 0.00223872 0.00251189 0.00281838 0.00316228 0.00354813 +0.00398107 0.00446684 0.00501187 0.00562341 0.00630957 0.00707946 0.00794328 +0.00891251 0.01 0.0112202 0.0125893 0.0141254 0.0158489 0.0177828 0.0199526 +0.0223872 0.0251189 0.0281838 0.0316228 0.0354813 0.0398107 0.0446684 +0.0501187 0.0562341 0.0630957 0.0707946 0.0794328 0.0891251 0.1 0.112202 +0.125893 0.141254 0.158489 0.177828 0.199526 0.223872 0.251189 0.281838 +0.316228 0.354813 0.398107 0.446684 0.501187 0.562341 0.630957 0.707946 +0.794328 0.891251 1 1.12202 1.25893 1.41254 1.58489 1.77828 1.99526 +2.23872 2.51189 2.81838 3.16228 3.54813 3.98107 4.46684 5.01187 5.62341 +6.30957 7.07946 7.94328 8.91251 10 11.2202 12.5893; +#X coords 0 10 123 0 200 100 1; +#X restore 302 48 graph; +#X text 504 141 0; +#X text 506 41 10; +#X text 321 151 ------ 123 samples ------; +#N canvas 0 0 450 300 graph2 0; +#X array mtof 130 float 1; +#A 0 8.1758 8.66196 9.17702 9.72272 10.3009 10.9134 11.5623 12.2499 +12.9783 13.75 14.5676 15.4339 16.3516 17.3239 18.354 19.4454 20.6017 +21.8268 23.1247 24.4997 25.9565 27.5 29.1352 30.8677 32.7032 34.6478 +36.7081 38.8909 41.2034 43.6535 46.2493 48.9994 51.9131 55 58.2705 +61.7354 65.4064 69.2957 73.4162 77.7817 82.4069 87.3071 92.4986 97.9989 +103.826 110 116.541 123.471 130.813 138.591 146.832 155.563 164.814 +174.614 184.997 195.998 207.652 220 233.082 246.942 261.626 277.183 +293.665 311.127 329.628 349.228 369.994 391.995 415.305 440 466.164 +493.883 523.251 554.365 587.33 622.254 659.255 698.456 739.989 783.991 +830.609 880 932.328 987.767 1046.5 1108.73 1174.66 1244.51 1318.51 +1396.91 1479.98 1567.98 1661.22 1760 1864.66 1975.53 2093 2217.46 2349.32 +2489.02 2637.02 2793.83 2959.96 3135.96 3322.44 3520 3729.31 3951.07 +4186.01 4434.92 4698.64 4978.03 5274.04 5587.65 5919.91 6271.93 6644.88 +7040 7458.62 7902.13 8372.02 8869.84 9397.27 9956.06 10548.1 11175.3 +11839.8 12543.9 13289.8 14080; +#X coords 0 12000 130 0 200 100 1; +#X restore 309 225 graph; +#X text 319 333 ------ 130 samples ------; +#X text 518 318 0; +#X text 520 218 12000; +#X restore 121 588 pd conversion-tables; +#X obj 31 411 line~; +#X obj 31 387 pack 0 100; +#X floatatom 31 339 3 0 150 0 - #0-cf -; +#X floatatom 47 461 3 0 999 0 - #0-q -; +#X obj 16 512 vcf~; +#X obj 31 436 tabread4~ mtof; +#X text 81 461 <-- Q (selectivity); +#X text 88 5 ANOTHER SWEEPING FILTER EXAMPLE; +#X obj 15 267 clip~ 0 0.5; +#X obj 15 291 *~ 2; +#X obj 15 315 -~; +#X text 119 268 trick to; +#X text 120 285 make symmetric; +#X text 118 302 triangle wave; +#X obj 22 147 f; +#X obj 55 145 + 1; +#X obj 22 217 mtof; +#X obj 55 169 mod 8; +#N canvas 0 0 450 300 graph1 0; +#X array \$0-array1 8 float 2; +#X coords 0 96 8 36 200 100 1; +#X restore 340 144 graph; +#X text 73 336 <-- center frequency; +#X obj 22 123 metro 85; +#X text 107 147 sequencer for; +#X text 122 164 8 note loop; +#X obj 16 576 output~; +#X obj 22 104 tgl 15 0 empty \$1-metro empty 0 -6 0 8 -262144 -1 -1 +1 1; +#N canvas 876 177 375 255 startup 0; +#X obj 22 24 loadbang; +#X obj 22 48 bng 15 250 50 0 empty empty empty 0 -6 0 8 -262144 -1 +-1; +#X obj 22 67 f \$0; +#X text 35 195 This subpatch loads initial; +#X text 31 219 values in number boxes.; +#X msg 22 91 \; \$1-cf 61 \; \$1-q 10 \; \$1-metro 1 \; \$1-array1 +0 45 48 50 48 55 53 55 57; +#X connect 0 0 1 0; +#X connect 1 0 2 0; +#X connect 2 0 5 0; +#X restore 121 611 pd startup; +#X text 96 364 at least 61; +#X obj 22 241 phasor~; +#X text 294 616 updated for Pd version 0.39; +#X obj 22 193 tabread \$0-array1; +#X obj 16 540 vcf~; +#X obj 31 362 max 61; +#X text 82 409 smooth & convert to Hz.; +#X obj 47 482 max 3; +#X text 105 483 at least 3; +#X text 11 28 Here's an approximate reconstruction of an old riff by +Pink Floyd. Because we're filtering a waveform with odd partials \, +it's easier to pick out the partials in the filtered sound than if +we had had both even and odd ones.; +#X text 78 527 rejection of the stop bands without having; +#X text 79 509 Put two vcf objects in series for better; +#X text 77 545 to make the passband excessively narrow.; +#X connect 1 0 6 0; +#X connect 2 0 1 0; +#X connect 3 0 32 0; +#X connect 4 0 34 0; +#X connect 5 0 31 0; +#X connect 6 0 5 1; +#X connect 6 0 31 1; +#X connect 9 0 10 0; +#X connect 10 0 11 0; +#X connect 11 0 5 0; +#X connect 15 0 16 0; +#X connect 15 0 30 0; +#X connect 16 0 18 0; +#X connect 17 0 28 0; +#X connect 18 0 15 1; +#X connect 21 0 15 0; +#X connect 25 0 21 0; +#X connect 28 0 9 0; +#X connect 28 0 11 1; +#X connect 30 0 17 0; +#X connect 31 0 24 0; +#X connect 31 0 24 1; +#X connect 32 0 2 0; +#X connect 34 0 5 2; +#X connect 34 0 31 2; diff --git a/pd/doc/3.audio.examples/H06.envelope.follower.pd b/pd/doc/3.audio.examples/H06.envelope.follower.pd new file mode 100644 index 00000000..8f536fba --- /dev/null +++ b/pd/doc/3.audio.examples/H06.envelope.follower.pd @@ -0,0 +1,86 @@ +#N canvas 87 74 585 621 12; +#X floatatom 354 464 4 0 0 0 - - -; +#X floatatom 150 316 3 0 999 0 - #0-osc2 -; +#X obj 150 336 osc~; +#X text 162 12 ENVELOPE FOLLOWER; +#X text 22 33 An envelope follower measures the mean square power of +an signal as it changes over time. (You can convert mean square power +to RMS ampitude or to decibels if you wish.) The term "mean square" +means simply that the signal should be squared \, and then averaged. +The averageing is done using a low-pass filter such as lop~.; +#X obj 62 466 lop~; +#X floatatom 93 444 3 0 100 0 - #0-lop -; +#X obj 61 356 +~; +#X text 187 317 <-- frequency of second oscillator; +#X obj 62 330 osc~ 500; +#X obj 62 413 *~; +#X obj 62 522 snapshot~; +#X floatatom 62 573 5 0 999 0 - - -; +#X obj 62 545 sqrt; +#X text 335 361 built-in envelope; +#X obj 354 491 dbtorms; +#X floatatom 354 518 5 0 999 0 - - -; +#N canvas 536 459 382 265 startup 0; +#X obj 22 24 loadbang; +#X obj 22 48 bng 15 250 50 0 empty empty empty 0 -6 0 8 -262144 -1 +-1; +#X obj 22 67 f \$0; +#X text 35 195 This subpatch loads initial; +#X text 31 219 values in number boxes.; +#X msg 22 91 \; \$1-osc2 400 \; \$1-lop 10 \; \$1-metro 1 \; pd dsp +1; +#X obj 223 132 metro 250; +#X obj 223 107 r \$0-metro; +#X obj 223 156 s \$0-tick; +#X connect 0 0 1 0; +#X connect 1 0 2 0; +#X connect 2 0 5 0; +#X connect 6 0 8 0; +#X connect 7 0 6 0; +#X restore 217 598 pd startup; +#X text 115 414 square the signal; +#X text 124 440 <-- responsiveness; +#X text 159 501 take snapshot; +#X text 108 548 convert to RMS; +#X text 327 599 updated for Pd version 0.39; +#X text 334 381 follower for comparison; +#X text 107 466 low-pass filter; +#X text 114 573 output; +#X obj 70 497 r \$0-tick; +#X text 159 517 every 1/4 second; +#X obj 389 439 r \$0-tick; +#X obj 354 439 f; +#X obj 376 414 env~; +#X text 20 242 The env~ object at right \, which is a built-in envelope +follower using a higher-quality low-pass filter than lop~ \, is shown +for comparison. Its output is artificially slowed down to match the +homemade one at left.; +#X obj 150 359 *~; +#X obj 185 360 tgl 15 0 empty empty empty 0 -6 0 8 -262144 -1 -1 0 +1; +#X text 204 358 <-- on/off; +#X text 20 128 Here we're adding two oscillators so the result should +be an RMS of one if the second oscillator is on \, 0.707 otherwise. +Note two effects: first \, the more responsive the envelope follower +\, the less accurate the result (but the faster it responds). Second +\, if the two oscillators are tuned close to each other their beating +affects the nombers coming out.; +#X connect 0 0 15 0; +#X connect 1 0 2 0; +#X connect 2 0 32 0; +#X connect 5 0 11 0; +#X connect 6 0 5 1; +#X connect 7 0 10 0; +#X connect 7 0 10 1; +#X connect 7 0 30 0; +#X connect 9 0 7 0; +#X connect 10 0 5 0; +#X connect 11 0 13 0; +#X connect 13 0 12 0; +#X connect 15 0 16 0; +#X connect 26 0 11 0; +#X connect 28 0 29 0; +#X connect 29 0 0 0; +#X connect 30 0 29 1; +#X connect 32 0 7 1; +#X connect 33 0 32 1; diff --git a/pd/doc/3.audio.examples/H07.measure.spectrum.pd b/pd/doc/3.audio.examples/H07.measure.spectrum.pd new file mode 100644 index 00000000..f290ca4a --- /dev/null +++ b/pd/doc/3.audio.examples/H07.measure.spectrum.pd @@ -0,0 +1,88 @@ +#N canvas 407 54 626 729 12; +#X floatatom 145 654 5 0 0 0 - - -; +#X obj 44 565 bp~; +#X obj 44 536 bp~; +#X obj 55 467 mtof; +#X floatatom 55 490 7 0 0 0 - - -; +#X floatatom 98 520 3 0 999 0 - #0-q -; +#X floatatom 55 447 7 0 150 0 - #0-pitch -; +#X obj 145 586 env~ 4096; +#X obj 45 370 *~ 0; +#X obj 44 395 +~ 1; +#X obj 145 608 + 0.5; +#X obj 145 631 int; +#X text 12 41 In this example we use two cascaded bandpass filters +to troll for partials in Jonathan Harvey's famous bell sample.; +#X text 16 233 You can hear partials around 48 \, 51.3 \, 55 (faint!) +\, 57 (fainter!) \, 60 \, two beating partials around 65 \, 67 \, 69 +\, 70.9 \, 71.75 \, 72.6 \, 74 \, 74.65 \, 75.6 \, 77 \, 81.2 \, 84.6 +\, 86.5 \, and probably many more. There's also one down at 36 \, but +it's easier to see it on the meter than hear it.; +#X text 124 447 <-- center pitch; +#X text 120 463 (shift-drag to fine tune); +#X text 131 491 <-- center frequency; +#X text 138 520 <-- Q (filter selectivity); +#X obj 44 614 output~; +#X text 341 680 updated for Pd version 0.39; +#X text 14 82 Note that filters can give unexpected level changes. +The bp~ object is designed to have roughly unit gain at the pass band +\, so the higher you set "Q" the more amplitude is lost. You can correct +for this by pushing the output amplitude \, but be sure to remember +to reset the output amplitude before you reduce Q again. I set the +Q to 100 and the output amplitude to 110 or 120 (with the room gain +way down.) Then holding the shift key \, slowly drag the center pitch +upward listening for modes.; +#N canvas 316 21 483 471 startup 0; +#X obj 53 335 r readfile; +#X obj 53 388 soundfiler; +#X obj 59 23 loadbang; +#X obj 59 49 bng 15 250 50 0 empty empty empty 0 -6 0 8 -262144 -1 +-1; +#X obj 59 70 f \$0; +#X obj 60 271 /; +#X msg 60 248 44100; +#X obj 60 223 t b f; +#X obj 60 199 r \$0-totsamps; +#X obj 60 294 s \$0-loopf; +#X msg 59 102 \; readfile symbol \$1-array \; \$1-totsamps 143718 \; +\$1-pitch 69 \; \$1-q 0; +#X msg 53 361 read -resize ../sound/bell.aiff \$1; +#X connect 0 0 11 0; +#X connect 2 0 3 0; +#X connect 3 0 4 0; +#X connect 4 0 10 0; +#X connect 5 0 9 0; +#X connect 6 0 5 0; +#X connect 7 0 6 0; +#X connect 7 1 5 1; +#X connect 8 0 7 0; +#X connect 11 0 1 0; +#X restore 456 625 pd startup; +#N canvas 0 0 450 300 graph1 0; +#X array \$0-array 155948 float 0; +#X coords 0 1 155947 -1 200 150 1; +#X restore 396 322 graph; +#X obj 45 322 r \$0-loopf; +#X obj 45 346 phasor~; +#X obj 44 419 tabread4~ \$0-array; +#X obj 89 370 r \$0-totsamps; +#X text 109 12 MEASURING SPECTRA USING BANDPASS FILTERS; +#X connect 1 0 7 0; +#X connect 1 0 18 0; +#X connect 1 0 18 1; +#X connect 2 0 1 0; +#X connect 3 0 4 0; +#X connect 4 0 2 1; +#X connect 4 0 1 1; +#X connect 5 0 2 2; +#X connect 5 0 1 2; +#X connect 6 0 3 0; +#X connect 7 0 10 0; +#X connect 8 0 9 0; +#X connect 9 0 25 0; +#X connect 10 0 11 0; +#X connect 11 0 0 0; +#X connect 23 0 24 0; +#X connect 24 0 8 0; +#X connect 25 0 2 0; +#X connect 26 0 8 1; diff --git a/pd/doc/3.audio.examples/H08.heterodyning.pd b/pd/doc/3.audio.examples/H08.heterodyning.pd new file mode 100644 index 00000000..5bdf28e3 --- /dev/null +++ b/pd/doc/3.audio.examples/H08.heterodyning.pd @@ -0,0 +1,85 @@ +#N canvas 280 49 607 705 12; +#X text 336 665 updated for Pd version 0.39; +#X text 109 12 MORE ON MEASURING SPECTRA: HETERODYNING; +#X obj 46 289 phasor~ 100; +#X obj 99 343 phasor~; +#X floatatom 99 320 5 0 999 0 - #0-freq -; +#X obj 99 395 cos~; +#X obj 148 395 cos~; +#X obj 148 370 +~ 0.25; +#X obj 47 547 snapshot~; +#N canvas 536 459 382 265 startup 0; +#X obj 22 24 loadbang; +#X obj 22 48 bng 15 250 50 0 empty empty empty 0 -6 0 8 -262144 -1 +-1; +#X obj 22 67 f \$0; +#X text 35 195 This subpatch loads initial; +#X text 31 219 values in number boxes.; +#X obj 223 132 metro 250; +#X obj 223 107 r \$0-metro; +#X obj 223 156 s \$0-tick; +#X msg 22 91 \; \$1-freq 100 \; \$1-lop 2 \; \$1-metro 1 \; pd dsp +1; +#X connect 0 0 1 0; +#X connect 1 0 2 0; +#X connect 2 0 8 0; +#X connect 5 0 7 0; +#X connect 6 0 5 0; +#X restore 382 573 pd startup; +#X obj 47 446 *~; +#X obj 91 446 *~; +#X obj 48 471 lop~; +#X obj 92 471 lop~; +#X floatatom 153 435 3 0 100 0 - #0-lop -; +#X text 186 435 <-- responsiveness; +#X obj 136 547 snapshot~; +#X floatatom 47 575 5 0 0 0 - - -; +#X floatatom 136 575 5 0 0 0 - - -; +#X obj 161 496 r \$0-tick; +#X obj 161 517 t b b; +#X obj 47 643 expr sqrt($f1*$f1+$f2*$f2); +#X floatatom 47 669 5 0 0 0 - - -; +#X text 56 248 signal to; +#X text 58 268 analyze; +#X text 51 44 Another method for picking out the strengths of partials +in a sound is heterodyning. We guess the frequency of a partial (as +in the previous patch) but this time we multiply by a complex exponential +to frequency-shift the partial down to zero (DC).; +#X text 47 126 Then a low-pass filter (applied separately on the real +and imaginary parts) removes all but the DC component thus obtained. +The result is two audio signals (which we take snapshots of) holding +the real and imaginary parts of the complex amplitude of the partial +we want. Compared to the previous method \, this had the advantage +of reporting the phase of the partial as well as its frequency.; +#X text 240 358 modulate; +#X text 237 394 to DC; +#X text 154 321 <-- test frequency; +#X text 236 376 test frequency; +#X text 132 471 low-pass filter; +#X text 55 596 real; +#X text 59 611 part; +#X text 207 589 part; +#X text 198 574 imaginary; +#X text 105 670 magnitude; +#X connect 2 0 10 0; +#X connect 2 0 11 0; +#X connect 3 0 5 0; +#X connect 3 0 7 0; +#X connect 4 0 3 0; +#X connect 5 0 10 1; +#X connect 6 0 11 1; +#X connect 7 0 6 0; +#X connect 8 0 17 0; +#X connect 10 0 12 0; +#X connect 11 0 13 0; +#X connect 12 0 8 0; +#X connect 13 0 16 0; +#X connect 14 0 13 1; +#X connect 14 0 12 1; +#X connect 16 0 18 0; +#X connect 17 0 21 0; +#X connect 18 0 21 1; +#X connect 19 0 20 0; +#X connect 20 0 8 0; +#X connect 20 1 16 0; +#X connect 21 0 22 0; diff --git a/pd/doc/3.audio.examples/H09.ssb.modulation.pd b/pd/doc/3.audio.examples/H09.ssb.modulation.pd new file mode 100644 index 00000000..c0fbf2df --- /dev/null +++ b/pd/doc/3.audio.examples/H09.ssb.modulation.pd @@ -0,0 +1,103 @@ +#N canvas 7 6 605 578 12; +#X obj 188 393 cos~; +#X obj 231 371 +~ -0.25; +#X obj 231 394 cos~; +#X obj 23 438 *~; +#X obj 89 438 *~; +#X obj 22 462 -~; +#X floatatom 188 322 5 0 0 0 - - -; +#X text 30 242 sample loop for; +#X text 30 260 test signal; +#X text 35 321 pair of allpass; +#X text 34 338 filters to make; +#X text 34 356 90 degree phase; +#X text 32 373 shifted versions; +#X text 238 323 <-- shift frequency; +#X text 310 356 cosine and sine waves; +#X text 55 7 SINGLE SIDEBAND MODULATION; +#X text 300 7 (AKA FREQUENCY SHIFTING); +#N canvas 555 154 448 326 bell-loop 0; +#X obj 23 142 /; +#X obj 23 214 +~ 1; +#X msg 23 117 44100; +#X obj 23 91 t b f; +#X obj 24 264 outlet~; +#N canvas 0 0 450 300 graph1 0; +#X array \$0-array 155948 float 0; +#X coords 0 1 155947 -1 200 150 1; +#X restore 234 88 graph; +#X obj 23 67 r \$0-totsamps; +#X obj 65 190 r \$0-totsamps; +#X obj 23 190 *~; +#X obj 23 166 phasor~; +#X obj 23 238 tabread4~ \$0-array; +#X connect 0 0 9 0; +#X connect 1 0 10 0; +#X connect 2 0 0 0; +#X connect 3 0 2 0; +#X connect 3 1 0 1; +#X connect 6 0 3 0; +#X connect 7 0 8 1; +#X connect 8 0 1 0; +#X connect 9 0 8 0; +#X connect 10 0 4 0; +#X restore 24 279 pd bell-loop; +#N canvas 711 110 483 471 startup 0; +#X obj 53 335 r readfile; +#X obj 53 388 soundfiler; +#X obj 59 23 loadbang; +#X obj 59 49 bng 15 250 50 0 empty empty empty 0 -6 0 8 -262144 -1 +-1; +#X obj 59 70 f \$0; +#X obj 60 271 /; +#X msg 60 248 44100; +#X obj 60 223 t b f; +#X obj 60 199 r \$0-totsamps; +#X obj 60 294 s \$0-loopf; +#X msg 53 361 read -resize ../sound/bell.aiff \$1; +#X msg 59 102 \; readfile symbol \$1-array \; \$1-totsamps 143718; +#X connect 0 0 10 0; +#X connect 2 0 3 0; +#X connect 3 0 4 0; +#X connect 4 0 11 0; +#X connect 5 0 9 0; +#X connect 6 0 5 0; +#X connect 7 0 6 0; +#X connect 7 1 5 1; +#X connect 8 0 7 0; +#X connect 10 0 1 0; +#X restore 157 530 pd startup; +#X obj 21 495 output~; +#X text 352 547 updated for Pd version 0.39; +#X obj 188 347 phasor~; +#X text 123 438 <-- complex multipier; +#X text 122 455 (calculates real part); +#X text 309 371 to form the real and; +#X text 309 387 imaginary part of a; +#X text 309 404 complex sinusoid; +#X text 43 37 The signal sideband modulator gives you only one sideband +for each frequency in the input signal (whereas ring modulation gave +both a positive and negative sideband). You can set the shift frequency +positive to shift all frequencies upward \, or negative to shift them +downwards.; +#X text 42 117 The technique is to filter the input into two versions +\, 90 degrees out of phase \, which can be interpreted as the real +and imaginary part of a complex signal with positive frequencies only. +You can then form the (complex) product of this with a (complex) sinusoid +to modulate upward or downward in frequency.; +#X obj 23 400 hilbert~; +#X text 42 213 The "Hilbert~" object is an abstraction in pd/extra. +; +#X connect 0 0 3 1; +#X connect 1 0 2 0; +#X connect 2 0 4 1; +#X connect 3 0 5 0; +#X connect 4 0 5 1; +#X connect 5 0 19 0; +#X connect 5 0 19 1; +#X connect 6 0 21 0; +#X connect 17 0 29 0; +#X connect 21 0 1 0; +#X connect 21 0 0 0; +#X connect 29 0 3 0; +#X connect 29 1 4 0; diff --git a/pd/doc/3.audio.examples/H10.measurement.pd b/pd/doc/3.audio.examples/H10.measurement.pd new file mode 100644 index 00000000..d0a04774 --- /dev/null +++ b/pd/doc/3.audio.examples/H10.measurement.pd @@ -0,0 +1,90 @@ +#N canvas 25 22 868 421 12; +#X obj 25 338 filter-graph2 tab1 tab2; +#N canvas 0 0 450 300 graph2 0; +#X array tab1 100 float 1; +#A 0 0.830737 0.844715 0.882793 0.953057 1.0592 1.19383 1.30927 1.28362 +1.08532 0.848171 0.656605 0.517756 0.418204 0.345252 0.291106 0.249389 +0.216703 0.190566 0.169369 0.1519 0.137418 0.12526 0.114871 0.105957 +0.0982917 0.0916027 0.0857987 0.0806894 0.076187 0.0722001 0.0686727 +0.0655318 0.0627325 0.060178 0.0580025 0.056008 0.0542273 0.0526222 +0.0511875 0.0499289 0.0488555 0.0478795 0.0470241 0.0462859 0.0456642 +0.0451251 0.0447277 0.0444219 0.0442324 0.0443406 0.0449216 0.0393798 +0.0442362 0.0444218 0.0447274 0.0451473 0.0456706 0.0462777 0.0470196 +0.0478395 0.0488555 0.0499664 0.0512245 0.0526221 0.05419 0.0559661 +0.0580025 0.0602342 0.0627325 0.0655169 0.0686727 0.0722052 0.076187 +0.0806893 0.085799 0.0916177 0.0982915 0.10592 0.11479 0.12526 0.137483 +0.151997 0.169411 0.190532 0.216594 0.24918 0.291106 0.345511 0.418206 +0.517664 0.656606 0.848216 1.08532 1.28264 1.30927 1.19534 1.05919 +0.951738 0.882758 0.851605; +#X coords 0 2 99 0 200 140 1; +#X restore 634 -1 graph; +#N canvas 0 0 450 300 graph2 0; +#X array tab2 100 float 3; +#A 0 8.59501e-06 0.0327982 0.0790568 0.143062 0.250239 0.425263 0.697661 +1.04745 1.37257 1.59826 1.73194 1.8042 1.83798 1.84726 1.84029 1.8221 +1.79589 1.76375 1.72711 1.68696 1.64405 1.5989 1.55192 1.50343 1.45366 +1.40283 1.35108 1.29854 1.24532 1.19151 1.13718 1.0824 1.02722 0.971679 +0.915831 0.859703 0.803332 0.746743 0.689957 0.633001 0.57589 0.518653 +0.461293 0.403871 0.346275 0.288763 0.230985 0.173676 0.11652 0.0674726 +-0.000119478 6.21552 6.16648 6.10932 6.05201 5.99424 5.93673 5.87913 +5.82171 5.76435 5.70711 5.65 5.59304 5.53626 5.47967 5.4233 5.36717 +5.31132 5.25578 5.2006 5.14582 5.09149 5.03768 4.98446 4.93192 4.88017 +4.82934 4.77958 4.73108 4.6841 4.63895 4.59604 4.55589 4.51925 4.48711 +4.4609 4.44271 4.43574 4.44501 4.4788 4.55106 4.68474 4.91043 5.23555 +5.58534 5.85774 6.03276 6.13994 6.20394 6.24278; +#X coords 0 6.283 99 0 200 140 1; +#X restore 639 200 graph; +#X text 621 56 1; +#X text 633 342 0; +#X text 615 265 pi; +#X text 608 195 2pi; +#X obj 25 203 bng 15 250 50 0 empty empty empty 0 -6 0 8 -262144 -1 +-1; +#X floatatom 33 249 5 0 0 0 - - -; +#X text 621 -8 2; +#X text 104 -6 MEASURING FILTER FREQUENCY AND PHASE RESPONSE; +#X text 610 382 updated for Pd version 0.39; +#X text 691 145 frequency; +#X text 631 141 0; +#X text 814 144 44100; +#N canvas 876 177 375 255 startup 0; +#X obj 22 24 loadbang; +#X obj 22 48 bng 15 250 50 0 empty empty empty 0 -6 0 8 -262144 -1 +-1; +#X obj 22 67 f \$0; +#X text 35 195 This subpatch loads initial; +#X text 31 219 values in number boxes.; +#X msg 22 91 \; \$1-freq 3000 \; \$1-q 3; +#X connect 0 0 1 0; +#X connect 1 0 2 0; +#X connect 2 0 5 0; +#X restore 285 350 pd startup; +#X floatatom 238 257 5 0 10000 0 - #0-freq -; +#X floatatom 249 280 3 0 999 0 - #0-q -; +#X text 12 18 You can use the "filter-graph1" and "filter-graph2" abstractions +as shown to test filters. Connect them as shown with a filter between +them. Try varying the parameters and/or substituting other filters. +; +#X text 575 127 gain=0; +#X text 574 327 phase=0; +#X obj 25 226 filter-graph1 100 44100; +#X obj 227 310 bp~; +#X text 44 202 <-- compute; +#X text 34 266 index; +#X text 290 254 <-- center frequency; +#X text 288 279 <-- "Q"; +#X text 9 86 "filter-graph1" takes as arguments the number of points +to graph and the frequency range. "filter-graph2 takes as arguments +the name of a table to hold the (frequency dependent) gain \, and another +\, if specified \, for the phase.; +#X text 8 153 You can edit this patch to replace "bp" with any other +filter you're curious about.; +#X connect 7 0 21 0; +#X connect 16 0 22 1; +#X connect 17 0 22 2; +#X connect 21 0 0 0; +#X connect 21 0 8 0; +#X connect 21 1 0 1; +#X connect 21 1 22 0; +#X connect 21 2 0 2; +#X connect 22 0 0 3; diff --git a/pd/doc/3.audio.examples/H11.shelving.pd b/pd/doc/3.audio.examples/H11.shelving.pd new file mode 100644 index 00000000..8eee1178 --- /dev/null +++ b/pd/doc/3.audio.examples/H11.shelving.pd @@ -0,0 +1,74 @@ +#N canvas 25 22 868 421 12; +#N canvas 0 0 450 300 graph2 0; +#X array \$0-tab1 100 float 1; +#A 0 1.39998 1.39868 1.3942 1.39349 1.38496 1.3772 1.36745 1.35633 +1.34208 1.32931 1.31817 1.30372 1.28879 1.27458 1.25944 1.24351 1.22874 +1.21386 1.19924 1.18487 1.17063 1.15653 1.14284 1.13144 1.11914 1.10722 +1.09603 1.08515 1.07479 1.06474 1.05519 1.04606 1.03715 1.02899 1.02092 +1.0128 1.00624 0.999291 0.992705 0.986255 0.980081 0.974014 0.969307 +0.964106 0.959111 0.954207 0.949901 0.945593 0.941227 0.937556 0.933778 +0.930231 0.926681 0.923353 0.920059 0.917466 0.914627 0.911849 0.9092 +0.906745 0.904264 0.901469 0.900065 0.898006 0.896023 0.893895 0.892373 +0.890666 0.889038 0.887483 0.885924 0.884597 0.883215 0.881537 0.880075 +0.879619 0.878522 0.877414 0.876234 0.87571 0.874819 0.873886 0.873124 +0.87241 0.871807 0.870763 0.870512 0.869952 0.869465 0.868958 0.868403 +0.86826 0.867939 0.866731 0.867094 0.867762 0.867796 0.864339 0.872811 +0.920535; +#X coords 0 5 99 0 200 300 1; +#X restore 621 28 graph; +#X obj 29 245 bng 15 250 50 0 empty empty empty 0 -6 0 8 -262144 -1 +-1; +#X floatatom 37 289 3 0 0 0 - - -; +#X text 676 334 frequency; +#N canvas 876 177 375 255 startup 0; +#X obj 22 24 loadbang; +#X obj 22 48 bng 15 250 50 0 empty empty empty 0 -6 0 8 -262144 -1 +-1; +#X obj 22 67 f \$0; +#X text 35 195 This subpatch loads initial; +#X text 31 219 values in number boxes.; +#X msg 22 91 \; \$1-pole 60 \; \$1-zero 20; +#X connect 0 0 1 0; +#X connect 1 0 2 0; +#X connect 2 0 5 0; +#X restore 289 390 pd startup; +#X floatatom 281 265 3 -99 99 0 - #0-pole -; +#X text 559 316 gain=0; +#X text 108 34 SHELVING FILTER; +#X obj 29 378 filter-graph2 \$0-tab1; +#X obj 29 266 filter-graph1 100 22050; +#X text 796 330 22050; +#X obj 232 314 rpole~; +#X obj 281 288 / 100; +#X floatatom 335 264 4 -100 100 0 - #0-zero -; +#X obj 335 287 / 100; +#X obj 231 346 rzero~; +#X text 608 21 5; +#X text 616 327 0; +#X text 604 258 1; +#X text 16 58 This patch demonstrates using the raw filters \, rpole~ +and rzero~ (raw \, real-valued one-pole and one-zero filters) \, to +make a shelving filter.; +#X text 14 109 If the pole is at p and the zero is at q \, the gain +at DC is (1-q)/(1-p) and the gain at Nyquist is (1+q)/(1+p). If the +pole location is close to plus or minus one \, this can give large +gains unless q is in the same vicinity. (try \, for example \, p=90% +\, q=70%).; +#X text 11 191 The crossover region varies from DC to Nyquist as p +and q decrease from 100% to -100%.; +#X text 278 241 pole; +#X text 334 241 zero; +#X text 383 263 (in hundredths); +#X text 610 387 updated for Pd version 0.39; +#X connect 1 0 9 0; +#X connect 5 0 12 0; +#X connect 9 0 2 0; +#X connect 9 0 8 0; +#X connect 9 1 8 1; +#X connect 9 1 11 0; +#X connect 9 2 8 2; +#X connect 11 0 15 0; +#X connect 12 0 11 1; +#X connect 13 0 14 0; +#X connect 14 0 15 1; +#X connect 15 0 8 3; diff --git a/pd/doc/3.audio.examples/H12.peaking.pd b/pd/doc/3.audio.examples/H12.peaking.pd new file mode 100644 index 00000000..e005e01a --- /dev/null +++ b/pd/doc/3.audio.examples/H12.peaking.pd @@ -0,0 +1,112 @@ +#N canvas 41 39 854 640 12; +#N canvas 0 0 450 300 graph2 0; +#X array \$0-tab1 100 float 1; +#A 0 0.960563 0.960996 0.962862 0.970269 0.977017 0.985214 1.00122 +1.02249 1.05453 1.10332 1.18193 1.31034 1.5315 1.91468 2.37977 2.37001 +1.92679 1.57244 1.36114 1.23298 1.15262 1.09943 1.06243 1.03636 1.0162 +1.00108 0.990295 0.981066 0.973613 0.967183 0.962328 0.958092 0.95445 +0.951329 0.948619 0.946121 0.943931 0.941728 0.940557 0.93934 0.938046 +0.936816 0.935569 0.934901 0.933719 0.933252 0.932534 0.931875 0.93121 +0.930347 0.929637 0.929717 0.929279 0.928865 0.928444 0.927868 0.92761 +0.926893 0.927202 0.926932 0.926666 0.926305 0.925926 0.926007 0.925702 +0.925624 0.92545 0.925285 0.924954 0.924532 0.924071 0.924718 0.924596 +0.924454 0.924247 0.923846 0.924172 0.923627 0.924005 0.92393 0.923866 +0.923769 0.923157 0.923666 0.923974 0.923561 0.923498 0.923437 0.922882 +0.922781 0.92203 0.923331 0.923265 0.922948 0.922413 0.922799 0.925651 +0.921397 0.931729 0.976084; +#X coords 0 5 99 0 200 300 1; +#X restore 616 193 graph; +#X obj 41 404 bng 15 250 50 0 empty empty empty 0 -6 0 8 -262144 -1 +-1; +#X floatatom 49 448 3 0 0 0 - - -; +#X text 671 499 frequency; +#N canvas 876 177 375 255 startup 0; +#X obj 22 24 loadbang; +#X obj 22 48 bng 15 250 50 0 empty empty empty 0 -6 0 8 -262144 -1 +-1; +#X obj 22 67 f \$0; +#X text 35 195 This subpatch loads initial; +#X text 31 219 values in number boxes.; +#X msg 22 91 \; \$1-pole 60 \; \$1-zero 20; +#X connect 0 0 1 0; +#X connect 1 0 2 0; +#X connect 2 0 5 0; +#X restore 328 602 pd startup; +#X floatatom 276 368 3 0 99 0 - #0-pole -; +#X text 554 481 gain=0; +#X obj 41 600 filter-graph2 \$0-tab1; +#X obj 41 425 filter-graph1 100 22050; +#X text 791 495 22050; +#X obj 276 391 / 100; +#X floatatom 330 367 4 0 100 0 - #0-zero -; +#X obj 330 390 / 100; +#X text 594 182 5; +#X text 611 492 0; +#X text 599 423 1; +#X text 596 596 updated for Pd version 0.39; +#X text 183 10 PEAKING FILTER; +#X floatatom 406 366 3 0 180 0 - #0-pole -; +#X text 415 328 angle; +#X text 399 344 (degrees); +#X obj 460 435 sin; +#X obj 405 436 cos; +#X obj 405 387 * 3.14159; +#X obj 405 411 / 180; +#X obj 241 515 *; +#X obj 405 460 t b f; +#X obj 460 460 t b f; +#X obj 209 543 cpole~; +#X obj 226 574 czero~; +#X text 266 332 pole and zero; +#X text 284 347 radii (%); +#X obj 277 516 *; +#X obj 314 542 *; +#X obj 349 542 *; +#X text 21 34 To get a peaking filter \, start with a shelving filter +but rotate the pole and zero to the point on the unit circle you want +to amplify or attenuate. The rpole~ and rzero~ filters are replaced +with their complex-valued siblings \, cpole~ and czero~. These filters +take a (real \, imaginary) pair to filter and another (real-imaginary) +pair to specify the pole or zero. As for rpole~ and rzero~ \, the coefficients +may change at audio rate.; +#X text 22 162 The outputs of cpole~ and czero~ are also in the form +of a (real-imaginary) pair. Both outlets of cpole~ are connected to +czero~ in this example \, but then since we want a real-valued filter +\, we only take the real part of the (complex) output of czero~.; +#X text 23 246 Here the pole and zero radii (p and q) control the center-frequency +gain by the formula (1-q)/(1-p). The closer to 1 the radii \, the narrower +the band affected. The non-peak gain \, (1+q)/(1+p) \, is close to +1 as long as p and q are at least 50% or so.; +#X connect 1 0 8 0; +#X connect 5 0 10 0; +#X connect 8 0 2 0; +#X connect 8 0 7 0; +#X connect 8 1 7 1; +#X connect 8 1 28 0; +#X connect 8 2 7 2; +#X connect 10 0 25 0; +#X connect 10 0 32 0; +#X connect 11 0 12 0; +#X connect 12 0 33 0; +#X connect 12 0 34 0; +#X connect 18 0 23 0; +#X connect 21 0 27 0; +#X connect 22 0 26 0; +#X connect 23 0 24 0; +#X connect 24 0 22 0; +#X connect 24 0 21 0; +#X connect 25 0 28 2; +#X connect 26 0 25 0; +#X connect 26 0 33 0; +#X connect 26 1 25 1; +#X connect 26 1 33 1; +#X connect 27 0 32 0; +#X connect 27 0 34 0; +#X connect 27 1 34 1; +#X connect 27 1 32 1; +#X connect 28 0 29 0; +#X connect 28 1 29 1; +#X connect 29 0 7 3; +#X connect 32 0 28 3; +#X connect 33 0 29 2; +#X connect 34 0 29 3; diff --git a/pd/doc/3.audio.examples/H13.butterworth.pd b/pd/doc/3.audio.examples/H13.butterworth.pd new file mode 100644 index 00000000..4cdcb628 --- /dev/null +++ b/pd/doc/3.audio.examples/H13.butterworth.pd @@ -0,0 +1,74 @@ +#N canvas 49 22 840 502 12; +#N canvas 0 0 450 300 graph2 0; +#X array \$0-tab1 100 float 1; +#A 0 0.999974 0.998121 0.998981 1.00106 1.00019 1.00133 1.00017 0.997406 +0.995891 0.986251 0.976591 0.959539 0.93749 0.903172 0.859824 0.805118 +0.744756 0.682757 0.617726 0.555802 0.496807 0.443599 0.395099 0.351557 +0.313317 0.279982 0.250867 0.225225 0.202565 0.182842 0.165875 0.150662 +0.13708 0.125107 0.11452 0.105018 0.0965065 0.0887956 0.0819179 0.0757449 +0.0701302 0.0650313 0.0604129 0.056344 0.0525467 0.0490616 0.04589 +0.0429836 0.0403206 0.0378735 0.0355742 0.0334788 0.0315483 0.0297412 +0.0280809 0.0265134 0.0251207 0.0237881 0.0225431 0.0213794 0.0203074 +0.0192861 0.0183551 0.0174563 0.0166231 0.0158432 0.0151 0.0144158 +0.0137608 0.0131513 0.0125729 0.0120266 0.0115073 0.0110253 0.0105541 +0.0101301 0.00971218 0.0093198 0.00894806 0.00859575 0.00825236 0.00794149 +0.00763651 0.00734779 0.00707258 0.0068092 0.00656191 0.0063171 0.00609739 +0.00587868 0.0056713 0.00547262 0.00528366 0.00509866 0.00493017 0.00476291 +0.00460384 0.00445121 0.00430475 0.00416536; +#X coords 0 5 99 0 200 300 1; +#X restore 615 71 graph; +#X obj 32 250 bng 15 250 50 0 empty empty empty 0 -6 0 8 -262144 -1 +-1; +#X floatatom 40 294 3 0 0 0 - - -; +#X text 670 377 frequency; +#N canvas 876 177 375 255 startup 0; +#X obj 22 24 loadbang; +#X obj 22 48 bng 15 250 50 0 empty empty empty 0 -6 0 8 -262144 -1 +-1; +#X obj 22 67 f \$0; +#X text 35 195 This subpatch loads initial; +#X text 31 219 values in number boxes.; +#X msg 22 91 \; \$1-lf 80 \; \$1-hf 150 \;; +#X connect 0 0 1 0; +#X connect 1 0 2 0; +#X connect 2 0 5 0; +#X restore 324 431 pd startup; +#X text 553 359 gain=0; +#X obj 32 446 filter-graph2 \$0-tab1; +#X text 593 60 5; +#X text 610 370 0; +#X text 598 301 1; +#X text 575 435 updated for Pd version 0.39; +#X text 186 -4 BUTTERWORTH FILTER; +#X obj 216 398 butterworth3~; +#X floatatom 244 340 3 0 100 0 - #0-lf -; +#X floatatom 291 339 3 85 150 0 - #0-hf -; +#X obj 244 366 mtof; +#X obj 291 366 mtof; +#X text 790 373 5000; +#X obj 32 271 filter-graph1 100 5000; +#X text 232 318 poles; +#X text 288 318 zeros; +#X text 24 20 The butterworth filter can be configured for low-pass +\, high-pass \, and shelving \, depending on the placement of the poles +and zeros. For low-pass \, the poles are placed to set the cutoff frequency +and the zeros are at -1 (the Nyquist). Leaving the poles fixed and +moving the zeros then gives shelving filters. In this example \, the +actual filtering is relegated to an abstraction (butterworth3~) which +takes frequencies corresponding to the pole and zero placement.; +#X text 24 147 The butterworth3~ abstraction computes filter coeffients +using control messages \, and so it is not suitable for continuously +time-varying Butterworth filters. For that \, it is often appropriate +to use time-saving approximations \, but precisely which approximations +to use will depend on the way the filter is to be used.; +#X connect 1 0 18 0; +#X connect 12 0 6 3; +#X connect 13 0 15 0; +#X connect 14 0 16 0; +#X connect 15 0 12 1; +#X connect 16 0 12 2; +#X connect 18 0 2 0; +#X connect 18 0 6 0; +#X connect 18 1 6 1; +#X connect 18 1 12 0; +#X connect 18 2 6 2; diff --git a/pd/doc/3.audio.examples/H14.all.pass.pd b/pd/doc/3.audio.examples/H14.all.pass.pd new file mode 100644 index 00000000..d493df7b --- /dev/null +++ b/pd/doc/3.audio.examples/H14.all.pass.pd @@ -0,0 +1,85 @@ +#N canvas 25 22 868 421 12; +#X obj 25 338 filter-graph2 tab1 tab2; +#N canvas 0 0 450 300 graph2 0; +#X array tab1 100 float 1; +#A 0 0.999994 1.0015 1.00454 0.999907 0.99994 0.999773 1.00002 1.0004 +0.999993 0.998703 1 0.999993 1 0.999699 0.999312 0.99924 0.999999 1 +0.999937 0.999782 0.999733 0.999322 0.9998 1 0.999998 0.999945 0.999998 +0.999779 0.999998 1 0.999991 0.999998 0.999999 0.99949 1 0.999165 1 +0.999991 0.999833 0.999694 1.00014 0.999247 1.00001 0.999976 1.00001 +0.99974 0.999947 0.998428 1.00052 1.00383 1.00011 0.991395 1.0006 1.00077 +0.999952 0.999955 1.00003 0.999937 0.999955 0.999616 0.999266 0.99916 +1 0.999989 0.999831 0.999696 1 0.999239 0.999998 0.999998 0.999993 +0.999998 0.999998 0.999426 0.999998 0.999999 0.999998 0.999916 0.999714 +0.99951 0.999825 0.999998 0.999999 0.999962 0.999837 0.999605 1 0.999164 +0.999996 0.99999 1 0.99999 0.999991 0.998888 1.00002 0.999955 0.999942 +0.999432 1.00007 1.00956; +#X coords 0 2 99 0 200 140 1; +#X restore 634 -1 graph; +#N canvas 0 0 450 300 graph2 0; +#X array tab2 100 float 3; +#A 0 8.595e-06 0.0615936 0.127096 0.18809 0.251487 0.314087 0.376949 +0.439804 0.502669 0.565481 0.628309 0.691149 0.753982 0.816816 0.879645 +0.942477 1.00531 1.06814 1.13097 1.1938 1.25663 1.31947 1.3823 1.44513 +1.50796 1.5708 1.63363 1.69646 1.75929 1.82212 1.88496 1.94779 2.01062 +2.07345 2.13628 2.19912 2.26195 2.32478 2.38761 2.45045 2.51327 2.5761 +2.63893 2.70178 2.76457 2.82751 2.89011 2.9535 3.01727 3.08969 3.14147 +3.19331 3.26573 3.3295 3.39289 3.45549 3.51843 3.58122 3.64407 3.7069 +3.76973 3.83255 3.89539 3.95822 4.02105 4.08388 4.14672 4.20955 4.27238 +4.33521 4.39804 4.46088 4.52371 4.58654 4.64937 4.7122 4.77504 4.83787 +4.9007 4.96353 5.02637 5.0892 5.15203 5.21486 5.27769 5.34052 5.40335 +5.46619 5.52902 5.59185 5.65469 5.71752 5.78033 5.8432 5.90605 5.96891 +6.03151 6.09491 6.1559 6.21446; +#X coords 0 6.283 99 0 200 140 1; +#X restore 639 200 graph; +#X text 621 56 1; +#X text 633 342 0; +#X text 615 265 pi; +#X text 608 195 2pi; +#X obj 25 203 bng 15 250 50 0 empty empty empty 0 -6 0 8 -262144 -1 +-1; +#X floatatom 33 249 5 0 0 0 - - -; +#X text 621 -8 2; +#X text 610 382 updated for Pd version 0.39; +#X text 691 145 frequency; +#X text 631 141 0; +#X text 814 144 44100; +#N canvas 876 177 375 255 startup 0; +#X obj 22 24 loadbang; +#X obj 22 48 bng 15 250 50 0 empty empty empty 0 -6 0 8 -262144 -1 +-1; +#X obj 22 67 f \$0; +#X text 35 195 This subpatch loads initial; +#X text 31 219 values in number boxes.; +#X msg 22 91 \; \$1-pole 80; +#X connect 0 0 1 0; +#X connect 1 0 2 0; +#X connect 2 0 5 0; +#X restore 398 370 pd startup; +#X text 575 127 gain=0; +#X text 574 327 phase=0; +#X obj 25 226 filter-graph1 100 44100; +#X text 44 202 <-- compute; +#X text 34 266 index; +#X text 104 -6 ALL-PASS FILTERS; +#X floatatom 346 264 3 -99 99 0 - #0-pole -; +#X obj 239 306 rpole~; +#X obj 346 287 / 100; +#X obj 239 281 rzero_rev~; +#X text 341 240 pole (%); +#X text 14 20 The all-pass filter has a phase response that depends +on its coefficient \, and a flat frequency response. The coefficient +(p) gives the location of the pole. There is a zero at 1/p \, unless +p=0. If p=0 the filter is effectively a one-sample delay. Negative +values of $p$ are allowed \, as long as p is between -1 and 1; +#X connect 7 0 17 0; +#X connect 17 0 0 0; +#X connect 17 0 8 0; +#X connect 17 1 0 1; +#X connect 17 1 24 0; +#X connect 17 2 0 2; +#X connect 21 0 23 0; +#X connect 22 0 0 3; +#X connect 23 0 24 1; +#X connect 23 0 22 1; +#X connect 24 0 22 0; diff --git a/pd/doc/3.audio.examples/H15.phaser.pd b/pd/doc/3.audio.examples/H15.phaser.pd new file mode 100644 index 00000000..4de372c1 --- /dev/null +++ b/pd/doc/3.audio.examples/H15.phaser.pd @@ -0,0 +1,109 @@ +#N canvas 25 22 703 596 12; +#X text 448 562 updated for Pd version 0.39; +#X text 167 -1 PHASER; +#N canvas 876 177 375 255 startup 0; +#X obj 22 24 loadbang; +#X obj 22 48 bng 15 250 50 0 empty empty empty 0 -6 0 8 -262144 -1 +-1; +#X obj 22 67 f \$0; +#X text 35 195 This subpatch loads initial; +#X text 31 219 values in number boxes.; +#X msg 22 91 \; \$1-pole 80; +#X connect 0 0 1 0; +#X connect 1 0 2 0; +#X connect 2 0 5 0; +#X restore 323 561 pd startup; +#N canvas 0 0 660 424 chord 0; +#X obj 87 97 -~ 0.5; +#X obj 87 146 clip~ -0.5 0.5; +#X obj 87 169 cos~; +#X obj 91 252 hip~ 5; +#X obj 91 315 outlet~; +#X obj 87 122 *~ 3; +#X obj 87 74 phasor~ 220; +#X obj 221 97 -~ 0.5; +#X obj 221 146 clip~ -0.5 0.5; +#X obj 221 169 cos~; +#X obj 221 122 *~ 3; +#X obj 356 100 -~ 0.5; +#X obj 356 149 clip~ -0.5 0.5; +#X obj 356 172 cos~; +#X obj 356 125 *~ 3; +#X obj 491 100 -~ 0.5; +#X obj 491 149 clip~ -0.5 0.5; +#X obj 491 172 cos~; +#X obj 491 125 *~ 3; +#X obj 221 74 phasor~ 251; +#X obj 356 77 phasor~ 281; +#X obj 491 77 phasor~ 311; +#X text 147 32 test sound for phaser; +#X obj 91 285 *~ 0.2; +#X connect 0 0 5 0; +#X connect 1 0 2 0; +#X connect 2 0 3 0; +#X connect 3 0 23 0; +#X connect 5 0 1 0; +#X connect 6 0 0 0; +#X connect 7 0 10 0; +#X connect 8 0 9 0; +#X connect 9 0 3 0; +#X connect 10 0 8 0; +#X connect 11 0 14 0; +#X connect 12 0 13 0; +#X connect 13 0 3 0; +#X connect 14 0 12 0; +#X connect 15 0 18 0; +#X connect 16 0 17 0; +#X connect 17 0 3 0; +#X connect 18 0 16 0; +#X connect 19 0 7 0; +#X connect 20 0 11 0; +#X connect 21 0 15 0; +#X connect 23 0 4 0; +#X restore 73 271 pd chord; +#X obj 72 533 output~; +#X obj 95 325 rpole~; +#X obj 95 300 rzero_rev~; +#X obj 95 374 rpole~; +#X obj 95 349 rzero_rev~; +#X obj 95 422 rpole~; +#X obj 95 397 rzero_rev~; +#X obj 95 471 rpole~; +#X obj 95 446 rzero_rev~; +#X obj 72 501 +~; +#X text 23 17 The phaser ranks \, along with fuzz and wah-wah \, as +one of the great guitar pedals. A phaser simply adds an all-passed +copy of the signal to the original \, making phase reinforcement and +cancellation at frequencies that depend on the all-pass coefficients. +In this example the coefficients range from 0.88 to 0.98 \, controlled +by a phasor~ object (no relation). The phasor~ is converted to a symmetrical +triangle wave (abs($v1-0.5)) and then ranged appropriately.; +#X obj 250 417 phasor~ 0.3; +#X text 22 158 Many variations of this have been invented. A deeper +effect can be obtained by using 12 all-pass filters and adding the +outputs of the 4th \, 8th. and 12th one to the original. Various stereo +configurations are possible. Some people use 6 instead of the 4 stages +used here. Controls can be added to change the frequency of sweeping +and the range of the all-pass coeefficients.; +#X obj 250 449 expr~ 1 - 0.03 - 0.6*abs($v1-0.5)*abs($v1-0.5); +#X connect 3 0 6 0; +#X connect 3 0 13 0; +#X connect 5 0 8 0; +#X connect 6 0 5 0; +#X connect 7 0 10 0; +#X connect 8 0 7 0; +#X connect 9 0 12 0; +#X connect 10 0 9 0; +#X connect 11 0 13 1; +#X connect 12 0 11 0; +#X connect 13 0 4 0; +#X connect 13 0 4 1; +#X connect 15 0 17 0; +#X connect 17 0 6 1; +#X connect 17 0 5 1; +#X connect 17 0 8 1; +#X connect 17 0 7 1; +#X connect 17 0 10 1; +#X connect 17 0 9 1; +#X connect 17 0 12 1; +#X connect 17 0 11 1; diff --git a/pd/doc/3.audio.examples/H16.adsr.filter.qlist.pd b/pd/doc/3.audio.examples/H16.adsr.filter.qlist.pd new file mode 100644 index 00000000..f112d2b6 --- /dev/null +++ b/pd/doc/3.audio.examples/H16.adsr.filter.qlist.pd @@ -0,0 +1,167 @@ +#N canvas 131 52 921 585 12; +#X obj 12 219 r trigger; +#X obj 12 437 *~; +#X obj 12 330 *~ 0.01; +#X obj 12 365 *~; +#X obj 12 395 *~; +#X obj 59 359 r pitch; +#X obj 59 409 mtof; +#X floatatom 59 384 4 0 0 0 - - -; +#X floatatom 36 271 4 0 0 0 - - -; +#X obj 36 246 r level; +#X floatatom 110 271 4 0 0 0 - - -; +#X obj 110 246 r attack; +#X floatatom 195 271 4 0 0 0 - - -; +#X obj 195 246 r decay; +#X floatatom 270 271 4 0 0 0 - - -; +#X floatatom 364 271 4 0 0 0 - - -; +#X obj 270 246 r sustain; +#X obj 364 246 r release; +#X obj 499 158 r note; +#X msg 500 236 \; trigger 1; +#X obj 602 225 del; +#X msg 602 247 \; trigger 0; +#X obj 14 166 qlist; +#X obj 14 7 r qlist; +#X msg 35 34 bang; +#X msg 35 59 rewind; +#X obj 42 88 r tempo; +#X floatatom 42 113 4 0 0 0 - - -; +#X msg 42 138 tempo \$1; +#X obj 499 201 t b f; +#X obj 550 198 s pitch; +#X obj 624 176 r duration; +#X floatatom 624 201 4 0 0 0 - - -; +#X floatatom 499 181 4 0 0 0 - - -; +#X obj 268 319 r trigger; +#X floatatom 294 375 4 0 0 0 - - -; +#X floatatom 366 405 4 0 0 0 - - -; +#X floatatom 456 405 4 0 0 0 - - -; +#X floatatom 542 405 4 0 0 0 - - -; +#X floatatom 638 405 4 0 0 0 - - -; +#X obj 294 350 r level2; +#X obj 366 380 r attack2; +#X obj 456 380 r decay2; +#X obj 542 380 r sustain2; +#X obj 638 380 r release2; +#X obj 59 434 tabosc4~ array1; +#X floatatom 218 365 4 0 0 0 - - -; +#X obj 12 481 vcf~; +#X floatatom 119 487 4 0 0 0 - - -; +#X obj 119 462 r q; +#X obj 12 305 adsr 0 0 0 0 0; +#X obj 268 443 adsr 0 0 0 0 0; +#X obj 294 400 / 69.23; +#X obj 218 390 mtof; +#X obj 218 415 sqrt; +#X obj 218 440 sqrt; +#X obj 176 335 r filter; +#X obj 219 493 *~; +#X obj 219 518 *~; +#X obj 268 468 +~ 1; +#X obj 218 465 *~; +#X text 118 214 ADSR for amplitude:; +#N canvas 0 258 703 380 otherstuff 0; +#X obj 289 86 loadbang; +#X obj 418 85 loadbang; +#N canvas 0 0 450 300 graph2 0; +#X array array1 67 float 1; +#A 0 0 0 0 0 0.714286 0.742857 0.757143 0.771429 0.778571 0.785714 +0.785714 0.785714 0.785714 0.790476 0.795238 0.614286 0.585714 0.442857 +0.271429 -0.128571 -0.142857 -0.157143 -0.171429 -0.642857 -0.528571 +-0.614286 -0.685714 -0.828571 -0.828571 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0.557143 0.571429 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; +#X coords 0 1 66 -1 200 140 1; +#X restore 62 81 graph; +#X msg 418 115 \; qlist read qlist2.txt; +#X msg 289 111 \; level 100 \; attack 20 \; decay 300 \; sustain 70 +\; release 300 \; duration 300 \; pitch 72 \; filter 38 \; level2 49 +\; attack2 19 \; decay2 300 \; sustain2 17 \; release2 700 \; q 3 \; +tempo 4; +#X connect 0 0 4 0; +#X connect 1 0 3 0; +#X restore 134 560 pd otherstuff; +#X text 87 33 <--start loop; +#X text 104 61 <--stop loop; +#X text 90 113 <--set tempo; +#X text 257 562 <--loadbangs and table; +#X msg 447 517 \; qlist read qlist2.txt; +#X text 441 493 click to reload qlist2.txt; +#X obj 12 509 output~; +#X text 229 19 This is an analog-synth sound made using a wavetable +oscillator and a "vcf~' object. Unkike the "floyd" example earlier +\, we use a qlist object to do the sequencing. This can also be adapted +to make a keyboard synth.; +#X text 227 85 The qlist reads the file \, "qlist2.txt" \, which contains +four "note" messages and a message at the end that restarts the qlist +at the beginning. The "note" messages are translated into a pitch change +and triggers for the ADSRs.; +#X text 667 551 updated for Pd version 0.39; +#X text 379 305 ADSR for filter. Here \, it works better to make the +envelope modify a constant "filter pitch"--so the "filter" receive +gets the "mtof" treatment and the ADSR is an offset in halftones.; +#X text 231 1 ANALOG_STYLE SYNTH USING QLIST; +#X connect 0 0 50 0; +#X connect 1 0 47 0; +#X connect 2 0 3 0; +#X connect 2 0 3 1; +#X connect 3 0 4 0; +#X connect 3 0 4 1; +#X connect 4 0 1 0; +#X connect 5 0 7 0; +#X connect 6 0 45 0; +#X connect 7 0 6 0; +#X connect 8 0 50 1; +#X connect 9 0 8 0; +#X connect 10 0 50 2; +#X connect 11 0 10 0; +#X connect 12 0 50 3; +#X connect 13 0 12 0; +#X connect 14 0 50 4; +#X connect 15 0 50 5; +#X connect 16 0 14 0; +#X connect 17 0 15 0; +#X connect 18 0 33 0; +#X connect 20 0 21 0; +#X connect 23 0 22 0; +#X connect 24 0 22 0; +#X connect 25 0 22 0; +#X connect 26 0 27 0; +#X connect 27 0 28 0; +#X connect 28 0 22 0; +#X connect 29 0 20 0; +#X connect 29 0 19 0; +#X connect 29 1 30 0; +#X connect 31 0 32 0; +#X connect 32 0 20 1; +#X connect 33 0 29 0; +#X connect 34 0 51 0; +#X connect 35 0 52 0; +#X connect 36 0 51 2; +#X connect 37 0 51 3; +#X connect 38 0 51 4; +#X connect 39 0 51 5; +#X connect 40 0 35 0; +#X connect 41 0 36 0; +#X connect 42 0 37 0; +#X connect 43 0 38 0; +#X connect 44 0 39 0; +#X connect 45 0 1 1; +#X connect 46 0 53 0; +#X connect 47 0 69 0; +#X connect 47 0 69 1; +#X connect 48 0 47 2; +#X connect 49 0 48 0; +#X connect 50 0 2 0; +#X connect 51 0 59 0; +#X connect 52 0 51 1; +#X connect 53 0 54 0; +#X connect 54 0 55 0; +#X connect 55 0 60 0; +#X connect 56 0 46 0; +#X connect 57 0 58 0; +#X connect 57 0 58 1; +#X connect 58 0 47 1; +#X connect 59 0 60 1; +#X connect 60 0 57 0; +#X connect 60 0 57 1; diff --git a/pd/doc/3.audio.examples/I01.Fourier.analysis.pd b/pd/doc/3.audio.examples/I01.Fourier.analysis.pd new file mode 100644 index 00000000..31bcce63 --- /dev/null +++ b/pd/doc/3.audio.examples/I01.Fourier.analysis.pd @@ -0,0 +1,90 @@ +#N canvas 25 8 688 708 12; +#X floatatom 38 264 7 0 0 0 - - -; +#N canvas 0 0 450 300 graph1 0; +#X array \$0-real 64 float 2; +#X coords 0 64 64 -64 256 200 1; +#X restore 423 184 graph; +#X floatatom 38 168 5 0 32 0 - - -; +#X obj 78 240 samplerate~; +#X obj 38 215 t f b; +#X obj 38 240 *; +#X obj 80 568 metro 250; +#X obj 38 637 tabwrite~ \$0-real; +#X obj 67 614 tabwrite~ \$0-imaginary; +#X obj 38 384 osc~; +#N canvas 0 0 450 300 graph1 0; +#X array \$0-imaginary 64 float 2; +#X coords 0 64 64 -64 256 200 1; +#X restore 423 417 graph; +#X obj 69 360 f; +#X floatatom 91 316 3 0 100 0 - - -; +#X obj 91 337 / 100; +#X obj 38 191 / 64; +#X text 504 163 real part; +#X text 489 398 imaginary part; +#X obj 80 545 loadbang; +#X text 94 166 <- frequency; +#X text 133 182 (as multiple; +#X text 135 198 of SR/64 \, the; +#X text 133 215 fundamental); +#X text 170 345 of a cycle; +#X text 431 638 updated for PD version 0.39; +#X obj 89 590 s \$0-snap; +#X obj 69 286 r \$0-snap; +#X text 127 315 <- phase in; +#X text 161 331 hundredths; +#X text 113 264 <- frequency \, Hz.; +#X text 87 415 given the real and imaginary part; +#X text 88 431 of a complex-valued signal. Here; +#X text 87 447 the imaginary part is zero (the; +#X text 86 400 fft~ computes the Fourier transform \,; +#X text 186 541 real and imaginary; +#X text 186 557 outputs are graphed; +#X text 185 574 separately.; +#X text 86 464 input is real-valued). The output; +#X text 85 482 is a (real \, imaginary) pair for each; +#X text 86 500 frequency from 0 to 63 (in units of; +#X text 87 520 SR/64).; +#X text 145 -36 The "fft~" object has separate inlets for the real +and imaginary parts of a complex-valued signal and outputs its Fourier +transform \, again using separate outlets for the real and imaginary +part. The transform is done on one block of samples (here the block +size is 64 \, Pd's default.) The outputs give the complex amplitudes +of the harmonics of the input signal \, from DC up. The harmonics are +tuned to the fundamental frequency of the analysis \, 1/64th of the +sample rate. If the frequency (in harmonics) is an integer \, the result +is two harmonics symmetric about the Nyquist frequency. Fractional +frequencies spill across harmonics. Changing the initial phase rotates +energy from real to imaginary and back.; +#X text 26 -24 ANALYSIS; +#X text 27 -42 FOURIER; +#X msg 38 79 0; +#X msg 38 100 10; +#X msg 38 121 10.5; +#X text 159 283 bang-on-snapshot; +#X text 157 297 from below; +#X text 100 363 sync phase with snapshots; +#X obj 37 423 fft~; +#X msg 274 614 \; pd dsp 1; +#X connect 0 0 9 0; +#X connect 2 0 14 0; +#X connect 3 0 5 1; +#X connect 4 0 5 0; +#X connect 4 1 3 0; +#X connect 5 0 0 0; +#X connect 6 0 7 0; +#X connect 6 0 8 0; +#X connect 6 0 24 0; +#X connect 9 0 49 0; +#X connect 11 0 9 1; +#X connect 12 0 13 0; +#X connect 13 0 11 1; +#X connect 14 0 4 0; +#X connect 17 0 6 0; +#X connect 17 0 50 0; +#X connect 25 0 11 0; +#X connect 43 0 2 0; +#X connect 44 0 2 0; +#X connect 45 0 2 0; +#X connect 49 0 7 0; +#X connect 49 1 8 0; diff --git a/pd/doc/3.audio.examples/I02.Hann.window.pd b/pd/doc/3.audio.examples/I02.Hann.window.pd new file mode 100644 index 00000000..1cf8b46a --- /dev/null +++ b/pd/doc/3.audio.examples/I02.Hann.window.pd @@ -0,0 +1,181 @@ +#N canvas 281 223 567 589 12; +#N canvas 228 148 651 544 fft-analysis 0; +#X obj 15 164 *~; +#X obj 14 99 inlet~; +#X obj 15 218 rfft~; +#X obj 36 140 tabreceive~ \$0-hann; +#X obj 14 306 *~; +#X obj 56 306 *~; +#X obj 15 356 sqrt~; +#X obj 14 498 tabwrite~ \$0-magnitude; +#X obj 23 386 loadbang; +#X obj 23 470 metro 250; +#X obj 23 449 tgl 15 0 empty empty empty 0 -6 0 8 -262144 -1 -1 1 1 +; +#X msg 31 411 \; pd dsp 1; +#X obj 15 8 block~ 512; +#X text 225 131 tabreceive~ outputs array contents \,; +#X text 225 149 constantly \, every block. Here it's; +#X text 223 169 used to get the Hann window to; +#X text 225 187 multiply by the input.; +#X text 120 7 block~ object does no computation but declares this; +#X text 120 24 window to be operating at a different block size from +; +#X text 122 58 Fourier transform.; +#X text 121 40 the parent window. This determines the size of the; +#X text 76 99 The inlet~ automatically re-blocks to the new block size. +; +#X obj 15 332 +~; +#X text 94 308 Take the magnitude by squaring real and imaginary part +\, adding and taking square root.; +#X text 110 424 periodically graph the output. It appears every 512 +samples (about 12 milliseconds) but we only update the graph 4 times +per second. The graph is back on the main (parent) window.; +#X text 82 215 forward real FFT. Like "fft~" \, but only one inlet +(for the real part) and only the first half of the output signals are +used. (The others are determined by symmetry: they're complex conjugates +of the first half \, in reverse order.) This takes 1/2 the CPU time +of "fft".; +#X connect 0 0 2 0; +#X connect 1 0 0 0; +#X connect 2 0 4 0; +#X connect 2 0 4 1; +#X connect 2 1 5 0; +#X connect 2 1 5 1; +#X connect 3 0 0 1; +#X connect 4 0 22 0; +#X connect 5 0 22 1; +#X connect 6 0 7 0; +#X connect 8 0 10 0; +#X connect 8 0 11 0; +#X connect 9 0 7 0; +#X connect 10 0 9 0; +#X connect 22 0 6 0; +#X restore 26 289 pd fft-analysis; +#N canvas 0 0 450 300 graph1 0; +#X array \$0-magnitude 256 float 0; +#X coords 0 256 255 0 256 100 1; +#X restore 287 208 graph; +#X text 110 6 WINDOWING AND BLOCKING FOURIER TRANSFORMS; +#X obj 25 264 osc~; +#X floatatom 25 218 5 0 0 0 - - -; +#X obj 25 240 * 10; +#X text 305 559 updated for Pd version 0.39; +#X text 349 183 magnitude; +#X text 284 311 0; +#X text 522 311 255; +#X text 273 297 0; +#X text 255 253 128; +#X text 254 203 256; +#N canvas 0 0 450 300 graph1 0; +#X array \$0-hann 512 float 1; +#A 0 0 3.76403e-05 0.000150591 0.000338793 0.000602275 0.000940949 +0.00135478 0.00184369 0.00240764 0.00304651 0.00376022 0.00454867 0.00541174 +0.0063493 0.00736117 0.00844723 0.00960734 0.0108413 0.0121489 0.01353 +0.0149843 0.0165117 0.0181119 0.0197847 0.0215298 0.0233469 0.0252359 +0.0271963 0.0292279 0.0313304 0.0335035 0.0357469 0.0380601 0.040443 +0.042895 0.0454159 0.0480052 0.0506626 0.0533877 0.05618 0.0590392 +0.0619648 0.0649563 0.0680134 0.0711355 0.0743222 0.077573 0.0808874 +0.0842649 0.0877051 0.0912073 0.0947711 0.0983959 0.102081 0.105826 +0.109631 0.113494 0.117416 0.121395 0.125431 0.129524 0.133672 0.137876 +0.142134 0.146446 0.150811 0.155229 0.159699 0.16422 0.168792 0.173413 +0.178084 0.182803 0.18757 0.192384 0.197244 0.20215 0.2071 0.212095 +0.217133 0.222214 0.227337 0.2325 0.237704 0.242948 0.24823 0.25355 +0.258907 0.264301 0.26973 0.275194 0.280691 0.286222 0.291785 0.297379 +0.303003 0.308658 0.314341 0.320052 0.32579 0.331555 0.337344 0.343159 +0.348997 0.354857 0.36074 0.366643 0.372567 0.37851 0.384471 0.390449 +0.396444 0.402454 0.40848 0.414519 0.420571 0.426634 0.432709 0.438794 +0.444889 0.450991 0.457101 0.463218 0.469339 0.475466 0.481596 0.487729 +0.493864 0.5 0.506136 0.512271 0.518404 0.524534 0.53066 0.536782 0.542899 +0.549009 0.555111 0.561205 0.56729 0.573365 0.579429 0.585481 0.59152 +0.597545 0.603556 0.609551 0.615529 0.62149 0.627433 0.633357 0.63926 +0.645143 0.651003 0.656841 0.662656 0.668445 0.67421 0.679948 0.685659 +0.691342 0.696997 0.702621 0.708215 0.713778 0.719309 0.724806 0.73027 +0.735699 0.741092 0.74645 0.75177 0.757052 0.762295 0.767499 0.772663 +0.777786 0.782867 0.787905 0.7929 0.79785 0.802756 0.807616 0.81243 +0.817197 0.821916 0.826587 0.831209 0.83578 0.840301 0.844771 0.849189 +0.853554 0.857866 0.862124 0.866328 0.870476 0.874569 0.878605 0.882584 +0.886506 0.890369 0.894174 0.897919 0.901605 0.905229 0.908793 0.912295 +0.915736 0.919113 0.922428 0.925678 0.928865 0.931987 0.935044 0.938036 +0.940961 0.94382 0.946613 0.949338 0.951995 0.954585 0.957106 0.959558 +0.96194 0.964254 0.966497 0.96867 0.970773 0.972804 0.974765 0.976654 +0.978471 0.980216 0.981889 0.983489 0.985016 0.98647 0.987852 0.989159 +0.990393 0.991553 0.992639 0.993651 0.994589 0.995452 0.99624 0.996954 +0.997593 0.998156 0.998645 0.999059 0.999398 0.999661 0.999849 0.999962 +1 0.999962 0.999849 0.999661 0.999398 0.999059 0.998645 0.998156 0.997592 +0.996953 0.996239 0.995451 0.994588 0.99365 0.992638 0.991552 0.990392 +0.989158 0.987851 0.986469 0.985015 0.983488 0.981887 0.980215 0.978469 +0.976652 0.974763 0.972803 0.970771 0.968669 0.966495 0.964252 0.961939 +0.959556 0.957104 0.954583 0.951993 0.949336 0.946611 0.943819 0.940959 +0.938034 0.935042 0.931985 0.928863 0.925676 0.922425 0.919111 0.915733 +0.912293 0.908791 0.905227 0.901602 0.897917 0.894171 0.890367 0.886503 +0.882582 0.878602 0.874566 0.870473 0.866325 0.862121 0.857863 0.853551 +0.849186 0.844768 0.840298 0.835777 0.831205 0.826584 0.821913 0.817194 +0.812427 0.807613 0.802753 0.797847 0.792896 0.787901 0.782863 0.777782 +0.77266 0.767496 0.762292 0.757048 0.751766 0.746446 0.741089 0.735695 +0.730266 0.724802 0.719305 0.713774 0.708211 0.702617 0.696993 0.691338 +0.685655 0.679944 0.674206 0.668441 0.662652 0.656837 0.650999 0.645139 +0.639256 0.633353 0.627429 0.621486 0.615525 0.609547 0.603552 0.597541 +0.591516 0.585477 0.579425 0.573361 0.567286 0.561201 0.555107 0.549004 +0.542895 0.536778 0.530656 0.52453 0.518399 0.512266 0.506132 0.499996 +0.49386 0.487725 0.481592 0.475462 0.469335 0.463213 0.457097 0.450987 +0.444885 0.43879 0.432705 0.42663 0.420566 0.414515 0.408476 0.40245 +0.39644 0.390445 0.384466 0.378505 0.372563 0.366639 0.360736 0.354853 +0.348993 0.343155 0.33734 0.331551 0.325786 0.320048 0.314337 0.308654 +0.303 0.297375 0.291781 0.286218 0.280687 0.27519 0.269726 0.264297 +0.258904 0.253547 0.248226 0.242944 0.237701 0.232497 0.227333 0.222211 +0.21713 0.212092 0.207097 0.202146 0.19724 0.19238 0.187566 0.182799 +0.17808 0.17341 0.168788 0.164217 0.159696 0.155226 0.150808 0.146443 +0.142131 0.137873 0.133669 0.129521 0.125428 0.121392 0.117413 0.113491 +0.109628 0.105823 0.102078 0.0983929 0.0947681 0.0912044 0.0877022 +0.0842621 0.0808846 0.0775702 0.0743194 0.0711327 0.0680107 0.0649537 +0.0619622 0.0590366 0.0561775 0.0533853 0.0506602 0.0480029 0.0454136 +0.0428928 0.0404408 0.038058 0.0357448 0.0335015 0.0313284 0.029226 +0.0271944 0.025234 0.0233452 0.0215281 0.019783 0.0181104 0.0165102 +0.0149829 0.0135286 0.0121476 0.01084 0.00960615 0.0084461 0.0073601 +0.00634828 0.00541082 0.00454783 0.00375944 0.00304583 0.00240701 0.00184315 +0.00135431 0.000940561 0.000601947 0.000338584 0.000150442 3.75807e-05 +; +#X coords 0 1 511 0 200 120 1; +#X restore 278 401 graph; +#X msg 156 415 0; +#X obj 50 464 osc~; +#X obj 50 416 samplerate~; +#X obj 50 487 *~ -0.5; +#X obj 50 510 +~ 0.5; +#X obj 42 535 tabwrite~ \$0-hann; +#X text 264 393 1; +#X text 257 511 0; +#X text 273 524 0; +#X obj 50 440 / 512; +#X obj 42 393 bng 15 250 50 0 empty empty empty 0 -6 0 8 -262144 -1 +-1; +#X text 321 373 Hann window; +#X text 98 462 period 512; +#X text 40 368 recalculate Hann; +#X text 75 383 window table; +#X text 100 233 tens of Hz.; +#X text 80 215 <- frequency \,; +#X text 98 270 click here and; +#X text 170 286 <- see; +#X text 21 32 In this example we use a sub-patch ("pd fft-analysis") +to re-block the Fourier transform to 512 points. The signal is multiplied +by the Hann window function (which is just a raised cosine.) The magnitude +\, which is computed in the sub-patch \, is graphed below in this window. +The point at 255 corresponds to just below the Nyquist frequency. Phase +isn't shown \, and unlike the previous patch we don't control the initial +phase of the oscillator. (For fun \, try drawing other window functions +with the mouse...); +#X text 459 527 511; +#X connect 3 0 0 0; +#X connect 4 0 5 0; +#X connect 5 0 3 0; +#X connect 14 0 15 1; +#X connect 15 0 17 0; +#X connect 16 0 23 0; +#X connect 17 0 18 0; +#X connect 18 0 19 0; +#X connect 23 0 15 0; +#X connect 24 0 16 0; +#X connect 24 0 14 0; +#X connect 24 0 19 0; diff --git a/pd/doc/3.audio.examples/I03.resynthesis.pd b/pd/doc/3.audio.examples/I03.resynthesis.pd new file mode 100644 index 00000000..f709d29f --- /dev/null +++ b/pd/doc/3.audio.examples/I03.resynthesis.pd @@ -0,0 +1,132 @@ +#N canvas 73 310 580 406 12; +#N canvas 265 48 643 640 fft-analysis 0; +#X obj 15 164 *~; +#X obj 14 99 inlet~; +#X obj 15 218 rfft~; +#X obj 36 140 tabreceive~ \$0-hann; +#X obj 14 353 *~; +#X obj 56 353 *~; +#X obj 15 8 block~ 512 4; +#X text 85 88 The inlet~ now re-uses 3/4 of the previous block \, along +with the 128 new samples.; +#X text 221 141 window function as before.; +#X obj 76 196 tabreceive~ \$0-gain; +#X obj 77 225 *~; +#X obj 16 506 *~; +#X obj 37 481 tabreceive~ \$0-hann; +#X obj 77 283 /~ 768; +#X text 98 301 divide by 3N/2 (factor of N because rfft and rifft aren't +normalized \, and 3/2 is the gain of overlap-4 reconstruction when +Hann window function is applied twice.); +#X text 120 216 Just to show we're doing something \, we multiply each +channel by a gain controlled by an array in the main window. The control +is quartic-scaled for easy editing.; +#X obj 78 251 *~; +#X text 92 357 Multiply the (complex-valued) spectrum amplitudes by +the (real-valued) gain-and-normalization-factor; +#X obj 15 399 rifft~; +#X text 89 396 Real-valued inverse Fourier transform. This uses only +the first N/@ points of its inputs \, supplying the rest by symmerty +(so it's OK that rfft~ obly puts out those N/2 points.) There's only +one outlet because the output is real-valued.; +#X obj 16 566 outlet~; +#X text 88 499 Multiply by the Hann window function again \, necessary +because the operation we performed might result in a signal that doesn't +go smoothly to zero at both ends.; +#X text 89 566 This repackages the output into 64-sample chunks for +the parent window. Since we're operating with an overlap \, the outlet~ +object performs an overlapped sum of the blocks computed in this window. +; +#X text 129 8 block~ object specifies vector size of 512 and overlap +four. This window now computes blocks of 512 samples at intervals of +128 samples computed on the parent patch.; +#X connect 0 0 2 0; +#X connect 1 0 0 0; +#X connect 2 0 4 0; +#X connect 2 1 5 0; +#X connect 3 0 0 1; +#X connect 4 0 18 0; +#X connect 5 0 18 1; +#X connect 9 0 10 0; +#X connect 9 0 10 1; +#X connect 10 0 16 0; +#X connect 10 0 16 1; +#X connect 11 0 20 0; +#X connect 12 0 11 1; +#X connect 13 0 4 1; +#X connect 13 0 5 1; +#X connect 16 0 13 0; +#X connect 18 0 11 0; +#X restore 26 289 pd fft-analysis; +#X text 290 362 updated for Pd version 0.39; +#N canvas 35 66 592 433 Hann-window 0; +#N canvas 0 0 450 300 graph1 0; +#X array \$0-hann 512 float 0; +#X coords 0 1 511 0 200 120 1; +#X restore 293 249 graph; +#X msg 171 263 0; +#X obj 65 312 osc~; +#X obj 65 264 samplerate~; +#X obj 65 335 *~ -0.5; +#X obj 65 358 +~ 0.5; +#X obj 57 383 tabwrite~ \$0-hann; +#X text 279 241 1; +#X text 272 359 0; +#X text 288 372 0; +#X obj 65 288 / 512; +#X obj 57 241 bng 15 250 50 0 empty empty empty 0 -6 0 8 -262144 -1 +-1; +#X text 336 221 Hann window; +#X text 113 310 period 512; +#X text 90 215 recalculate Hann; +#X text 125 230 window table; +#X obj 57 146 loadbang; +#X msg 79 179 \; pd dsp 1; +#X text 40 27 The Hann window is now recomputed on 'loadbang' to make +the file smaller (it doesn't have to be saved with the array.); +#X text 474 375 511; +#X connect 1 0 2 1; +#X connect 2 0 4 0; +#X connect 3 0 10 0; +#X connect 4 0 5 0; +#X connect 5 0 6 0; +#X connect 10 0 2 0; +#X connect 11 0 3 0; +#X connect 11 0 1 0; +#X connect 11 0 6 0; +#X connect 16 0 11 0; +#X connect 16 0 17 0; +#X restore 192 318 pd Hann-window; +#X obj 27 323 output~; +#X obj 25 264 noise~; +#N canvas 0 0 450 300 graph1 0; +#X array \$0-gain 256 float 3; +#A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; +#X coords 0 1 256 -0.01 512 60 1; +#X restore 22 168 graph; +#X msg 192 264 const 0; +#X obj 192 293 s \$0-gain; +#X text 138 0 FOURIER RESYNTHESIS; +#X text 6 218 0; +#X text 6 159 1; +#X text 19 228 0; +#X text 516 231 22K; +#X text 270 261 <- reset gain; +#X text 224 148 GAIN; +#X text 21 24 Using Fourier resynthesis you can take an incoming sound +\, operate on its spectrum \, and hear the result. Here we start with +white noise and apply a frequency-dependent gain \, which works as +a graphic equalizer. There are N/2 = 256 points \, each spaced SR/512 +Hz. apart (although their frequency ranges overlap). Open the "fft-analysis" +patch to see the workings.; +#X connect 0 0 3 0; +#X connect 0 0 3 1; +#X connect 4 0 0 0; +#X connect 6 0 7 0; diff --git a/pd/doc/3.audio.examples/I04.noisegate.pd b/pd/doc/3.audio.examples/I04.noisegate.pd new file mode 100644 index 00000000..0a8bd12a --- /dev/null +++ b/pd/doc/3.audio.examples/I04.noisegate.pd @@ -0,0 +1,330 @@ +#N canvas 42 28 657 564 12; +#X floatatom 316 376 0 0 0 0 - - -; +#X floatatom 81 384 0 0 100 0 - - -; +#N canvas 98 0 648 669 fft-analysis 0; +#X obj 35 589 *~; +#X obj 143 305 *~; +#X obj 158 150 *~; +#X obj 35 72 *~; +#X obj 76 527 *~; +#X obj 35 44 inlet~; +#X obj 35 528 *~; +#X obj 34 101 rfft~; +#X obj 35 558 rifft~; +#X obj 36 616 outlet~; +#X obj 119 149 *~; +#X obj 119 176 +~; +#X obj 165 278 r mask-level; +#X obj 100 422 /~; +#X obj 355 23 block~ 1024 4; +#X text 176 446 is signal power and "m" is mask.; +#X obj 131 332 -~; +#X obj 131 355 max~ 0; +#X obj 99 448 q8_sqrt~; +#X text 175 464 (zero if s < m).; +#X obj 144 256 tabreceive~ \$0-mask; +#X obj 76 72 tabreceive~ \$0-hann; +#X obj 69 590 tabreceive~ \$0-hann; +#N canvas 91 250 910 495 calculate-mask 0; +#X obj 125 379 inlet~; +#X msg 371 283 0; +#X msg 371 166 0; +#X obj 240 196 float; +#X obj 294 200 + 1; +#X obj 240 144 bang~; +#X obj 240 169 spigot; +#X floatatom 411 218 0 0 0 0 - - -; +#X obj 315 408 -~; +#X obj 371 258 sel 0; +#X obj 327 443 *~; +#X obj 293 443 +~; +#X floatatom 351 313 0 0 0 0 - - -; +#X obj 240 219 t f f; +#X obj 370 113 r make-mask; +#X obj 371 141 t b f; +#X obj 411 165 /; +#X text 483 212 number of; +#X text 491 227 frames; +#X floatatom 481 166 0 0 0 0 - - -; +#X obj 480 113 r window-msec; +#X obj 481 136 / 4; +#X text 521 133 hop size (analysis; +#X text 546 149 period) in msec; +#X obj 359 408 tabreceive~ \$0-mask; +#X obj 292 468 tabsend~ \$0-mask; +#X obj 371 218 <; +#X obj 235 258 expr 1/($f1+1); +#X text 134 17 calculate a mask using N msec of background noise; +#X text 43 354 current power (for each channel); +#X text 367 430 average the current power into the last mask to get +the new mask. The new value is weighted 1/n on the nth iteration.; +#X text 390 312 weight to average in new power to mask; +#X text 11 203 loop counting to desired; +#X text 78 219 number of frames; +#X text 72 39 This loops for "make-mask" milliseconds \, averaging +power in each channel over that amount of time. This is done by a moving +average whose weight is adjusted to average each new value equally +with each of the accumulating ones.; +#X connect 0 0 8 0; +#X connect 1 0 12 0; +#X connect 2 0 3 1; +#X connect 2 0 26 0; +#X connect 3 0 13 0; +#X connect 3 0 4 0; +#X connect 4 0 3 1; +#X connect 5 0 6 0; +#X connect 6 0 3 0; +#X connect 7 0 26 1; +#X connect 8 0 10 0; +#X connect 9 0 1 0; +#X connect 10 0 11 1; +#X connect 11 0 25 0; +#X connect 12 0 10 1; +#X connect 13 0 26 0; +#X connect 13 1 27 0; +#X connect 14 0 15 0; +#X connect 15 0 2 0; +#X connect 15 1 16 0; +#X connect 16 0 7 0; +#X connect 20 0 21 0; +#X connect 21 0 16 1; +#X connect 21 0 19 0; +#X connect 24 0 8 1; +#X connect 24 0 11 0; +#X connect 26 0 6 1; +#X connect 26 0 9 0; +#X connect 27 0 12 0; +#X restore 132 203 pd calculate-mask; +#X text 91 98 real Fourier transform; +#X obj 357 57 loadbang; +#X msg 357 80 \; pd dsp 1 \; window-size 1024; +#X text 193 355 ... but not less than zero; +#X text 101 561 real inverse Fourier transform; +#X text 196 498 normalize by 2/(3N) where N is window size; +#X text 168 332 current power ("s") minus level-adjusted mask ("m") +; +#X text 156 175 compute power (call it "s") in each channel; +#X obj 123 395 +~ 1e-20; +#X text 203 395 protect against division by zero; +#X text 179 426 compute sqrt((s-m)/s) where "s"; +#X text 296 204 <- subwindow calculates noise mask; +#X obj 98 499 /~ 1536; +#X connect 0 0 9 0; +#X connect 1 0 16 1; +#X connect 2 0 11 1; +#X connect 3 0 7 0; +#X connect 4 0 8 1; +#X connect 5 0 3 0; +#X connect 6 0 8 0; +#X connect 7 0 6 0; +#X connect 7 0 10 0; +#X connect 7 0 10 1; +#X connect 7 1 4 0; +#X connect 7 1 2 0; +#X connect 7 1 2 1; +#X connect 8 0 0 0; +#X connect 10 0 11 0; +#X connect 11 0 16 0; +#X connect 11 0 23 0; +#X connect 11 0 32 0; +#X connect 12 0 1 1; +#X connect 13 0 18 0; +#X connect 16 0 17 0; +#X connect 17 0 13 0; +#X connect 18 0 36 0; +#X connect 20 0 1 0; +#X connect 21 0 3 1; +#X connect 22 0 0 1; +#X connect 25 0 26 0; +#X connect 32 0 13 1; +#X connect 36 0 6 1; +#X connect 36 0 4 1; +#X restore 80 441 pd fft-analysis; +#N canvas 0 110 565 454 hann-window 0; +#N canvas 0 0 450 300 graph1 0; +#X array \$0-hann 1024 float 0; +#X coords 0 1 1023 0 300 100 1; +#X restore 82 311 graph; +#X obj 378 165 osc~; +#X obj 378 190 *~ -0.5; +#X obj 378 214 +~ 0.5; +#X obj 331 247 tabwrite~ \$0-hann; +#X obj 37 88 r window-size; +#X obj 38 173 /; +#X obj 127 142 samplerate~; +#X obj 38 251 s window-sec; +#X obj 177 204 swap; +#X obj 177 228 /; +#X obj 177 252 s window-hz; +#X obj 49 201 * 1000; +#X obj 49 228 s window-msec; +#X obj 38 115 t f b f; +#X msg 173 92 resize \$1; +#X obj 173 116 s \$0-hann; +#X obj 330 105 r window-hz; +#X msg 382 130 0; +#X obj 330 131 t f b; +#X text 15 8 calculate Hann window table (variable window size) and +constants window-hz (fundamental frequency of analysis) \, window-sec +and window-msec (analysis window size in seconds and msec).; +#X connect 1 0 2 0; +#X connect 2 0 3 0; +#X connect 3 0 4 0; +#X connect 5 0 14 0; +#X connect 6 0 8 0; +#X connect 6 0 12 0; +#X connect 7 0 6 1; +#X connect 7 0 9 1; +#X connect 9 0 10 0; +#X connect 9 1 10 1; +#X connect 10 0 11 0; +#X connect 12 0 13 0; +#X connect 14 0 6 0; +#X connect 14 0 9 0; +#X connect 14 1 7 0; +#X connect 14 2 15 0; +#X connect 15 0 16 0; +#X connect 17 0 19 0; +#X connect 18 0 1 1; +#X connect 19 0 1 0; +#X connect 19 1 4 0; +#X connect 19 1 18 0; +#X restore 331 478 pd hann-window; +#X text 197 355 noise; +#N canvas 132 255 660 373 insample 0; +#N canvas 0 0 450 300 graph1 0; +#X array \$0-sample 155948 float 0; +#X coords 0 1 155947 -1 400 150 1; +#X restore 236 25 graph; +#X obj 19 23 r read-sample; +#X obj 19 74 unpack s f; +#X obj 116 74 s insamprate; +#X obj 19 184 soundfiler; +#X obj 19 208 s insamplength; +#X text 113 252 read a sample; +#X obj 33 251 loadbang; +#X obj 19 100 t s b; +#X obj 75 99 symbol \$0-sample; +#X obj 19 135 pack s s; +#X msg 19 160 read -resize \$1 \$2; +#X obj 74 46 44100; +#X msg 33 275 \; read-sample ../sound/bell.aiff; +#X msg 31 322 \; read-sample ../sound/voice.wav; +#X obj 19 47 t a b; +#X connect 1 0 15 0; +#X connect 2 0 8 0; +#X connect 2 1 3 0; +#X connect 4 0 5 0; +#X connect 7 0 13 0; +#X connect 8 0 10 0; +#X connect 8 1 9 0; +#X connect 9 0 10 1; +#X connect 10 0 11 0; +#X connect 11 0 4 0; +#X connect 12 0 3 0; +#X connect 15 0 2 0; +#X connect 15 1 12 0; +#X restore 331 456 pd insample; +#X obj 316 401 s mask-level; +#X floatatom 202 379 0 0 100 0 - - -; +#X text 317 325 on; +#X text 362 326 off; +#X text 317 309 masking; +#X text 290 5 DENOISER; +#X msg 361 349 0; +#N canvas 190 43 812 571 test-signal 0; +#X obj 75 328 line~; +#X obj 75 250 f; +#X obj 251 164 r insamprate; +#X obj 583 219 *~; +#X obj 76 442 *~; +#X obj 583 110 noise~; +#X obj 370 493 +~; +#X obj 98 415 dbtorms; +#X obj 605 193 dbtorms; +#X obj 98 390 inlet; +#X obj 605 169 inlet; +#X obj 371 541 outlet~; +#X obj 236 139 r insamplength; +#X msg 75 304 0 \, \$1 \$2; +#X obj 75 276 pack 0 0; +#X obj 236 248 /; +#X obj 251 190 * 0.001; +#X obj 251 219 t b f; +#X obj 370 516 hip~ 5; +#X obj 75 136 loadbang; +#X obj 75 182 metro 1000; +#X obj 583 135 bp~ 10000 3; +#X obj 75 161 tgl 15 0 empty empty empty 0 -6 0 8 -262144 -1 -1 1 1 +; +#X text 270 247 sample duration \, msec; +#X text 126 84 looped sample playback; +#X obj 75 356 tabread4~ \$0-sample; +#X text 580 83 filtered noise; +#X text 105 15 TEST SIGNAL: looped sample plus noise. The inlets control +amplitude of each in dB.; +#X connect 0 0 25 0; +#X connect 1 0 14 0; +#X connect 2 0 16 0; +#X connect 3 0 6 1; +#X connect 4 0 6 0; +#X connect 5 0 21 0; +#X connect 6 0 18 0; +#X connect 7 0 4 1; +#X connect 8 0 3 1; +#X connect 9 0 7 0; +#X connect 10 0 8 0; +#X connect 12 0 1 1; +#X connect 12 0 15 0; +#X connect 13 0 0 0; +#X connect 14 0 13 0; +#X connect 15 0 14 1; +#X connect 15 0 20 1; +#X connect 16 0 17 0; +#X connect 17 0 15 0; +#X connect 17 1 15 1; +#X connect 18 0 11 0; +#X connect 19 0 22 0; +#X connect 20 0 1 0; +#X connect 21 0 3 0; +#X connect 22 0 20 0; +#X connect 25 0 4 0; +#X restore 81 409 pd test-signal; +#X text 69 357 sampler; +#X text 443 311 calculate noise mask; +#X obj 80 488 output~; +#X msg 462 338 \; make-mask 2000; +#X msg 316 348 15; +#N canvas 0 0 592 442 mask-table 0; +#N canvas 0 0 450 300 graph1 0; +#X array \$0-mask 512 float 0; +#X coords 0 500 511 0 400 300 1; +#X restore 110 76 graph; +#X text 25 14 This table ($0-mask) is the average power measured in +each channel of the spectrum \, presumed to represent the noise floor. +; +#X restore 331 500 pd mask-table; +#X text 80 322 amplitudes (dB); +#X text 68 26 This patch attempts to scrub the noise floor from a sample +in two steps. First using the "make-mask" message (which is caught +in the "fft-analysis" window) \, you estimate the background spectrum. +You would normally do this at a moment when only the background noise +is audible. Then \, turn on "masking" (to 15 by default \, but try +other values) and the patch will try to clean the background noise +out of a signal.; +#X text 67 149 For this demonstration \, you control the amplitudes +of a looping sample and a filtered noise source. Normally you'd hit +"calculate noise mask" with only hte noise turned on \, then turn both +the noise and the sampler on \, and also "masking" \, to see if the +patch can clean the noise out of the signal. Open the "fft-analysis" +window to see the algorithm \, or the "insample" window to change samples +\, or "mask-table" to see the current mask (the average signal power +of the noise to clean out of the signal).; +#X connect 0 0 6 0; +#X connect 1 0 13 0; +#X connect 2 0 16 0; +#X connect 2 0 16 1; +#X connect 7 0 13 1; +#X connect 12 0 0 0; +#X connect 13 0 2 0; +#X connect 18 0 0 0; diff --git a/pd/doc/3.audio.examples/I05.compressor.pd b/pd/doc/3.audio.examples/I05.compressor.pd new file mode 100644 index 00000000..10fe3375 --- /dev/null +++ b/pd/doc/3.audio.examples/I05.compressor.pd @@ -0,0 +1,237 @@ +#N canvas 557 371 620 428 12; +#N canvas 297 254 646 523 fft-analysis 0; +#X obj 115 409 *~; +#X obj 75 409 *~; +#X obj 76 114 *~; +#X obj 77 88 inlet~; +#X obj 76 137 rfft~; +#X obj 75 466 *~; +#X obj 171 177 *~; +#X obj 75 432 rifft~; +#X obj 75 489 outlet~; +#X obj 137 177 *~; +#X obj 137 200 +~; +#X obj 461 85 block~ 1024 4; +#X obj 137 351 clip~; +#X obj 178 306 r squelch; +#X obj 110 114 tabreceive~ \$0-hann; +#X obj 177 329 expr 0.01*$f1*$f1; +#X obj 461 116 loadbang; +#X obj 137 381 *~ 0.00065; +#X obj 137 225 +~ 1e-20; +#X obj 136 262 q8_rsqrt~; +#X obj 109 466 tabreceive~ \$0-hann; +#X text 31 5 As in the previous patch \, this works by multiplying +each channel of the Fourier analysis by a real number computed from +the magnitude. If the magnutude is "m" \, the correction factor is +1/m \, but only to an upper limit controlled by the "squelch" parameter. +; +#X text 211 174 squared magnitude; +#X text 219 225 protect against divide-by-zero; +#X text 223 261 quick 8-bit-accurate reciprocal square root; +#X text 222 277 (done by table lookup - about 0.25% accurate); +#X text 193 351 limit the gain to squelch*squelch/100; +#X text 238 381 normalize for 1024-point \, overlap-4 Hann; +#X text 151 409 multiply gain by real and complex part; +#X text 152 429 of the amplitude; +#X text 130 137 outputs complex amplitudes; +#X msg 461 139 \; pd dsp 1 \; window-size 1024 \; squelch 10 \; squelch-set +set 10; +#X connect 0 0 7 1; +#X connect 1 0 7 0; +#X connect 2 0 4 0; +#X connect 3 0 2 0; +#X connect 4 0 9 0; +#X connect 4 0 9 1; +#X connect 4 0 1 0; +#X connect 4 1 6 0; +#X connect 4 1 6 1; +#X connect 4 1 0 0; +#X connect 5 0 8 0; +#X connect 6 0 10 1; +#X connect 7 0 5 0; +#X connect 9 0 10 0; +#X connect 10 0 18 0; +#X connect 12 0 17 0; +#X connect 13 0 15 0; +#X connect 14 0 2 1; +#X connect 15 0 12 2; +#X connect 16 0 31 0; +#X connect 17 0 0 1; +#X connect 17 0 1 1; +#X connect 18 0 19 0; +#X connect 19 0 12 0; +#X connect 20 0 5 1; +#X restore 42 330 pd fft-analysis; +#X floatatom 57 196 0 0 500 0 - squelch-set -; +#X obj 57 220 s squelch; +#N canvas 190 43 427 657 test-signal 0; +#X obj 90 444 line~; +#X obj 90 369 f; +#X obj 90 524 outlet~; +#X msg 90 423 0 \, \$1 \$2; +#X obj 90 397 pack 0 0; +#X obj 190 344 /; +#X obj 317 295 * 0.001; +#X obj 90 497 hip~ 5; +#X obj 35 246 loadbang; +#X msg 90 322 1; +#X obj 90 344 metro 1000; +#X obj 259 272 t b b f; +#X obj 117 270 t b f; +#X obj 90 469 tabread4~ \$0-sample; +#X text 21 28 test signal: looped sample playback; +#X obj 67 131 hip~ 5; +#X obj 67 107 adc~ 1; +#X obj 129 131 s insamprate; +#X obj 67 70 inlet; +#X obj 129 107 samplerate~; +#X obj 116 246 r \$0-samplength; +#X obj 259 246 r \$0-insamprate; +#X obj 67 154 tabwrite~ \$0-sample; +#X connect 0 0 13 0; +#X connect 1 0 4 0; +#X connect 3 0 0 0; +#X connect 4 0 3 0; +#X connect 5 0 4 1; +#X connect 5 0 10 1; +#X connect 6 0 5 1; +#X connect 7 0 2 0; +#X connect 8 0 9 0; +#X connect 9 0 10 0; +#X connect 10 0 1 0; +#X connect 11 0 9 0; +#X connect 11 1 5 0; +#X connect 11 2 6 0; +#X connect 12 0 9 0; +#X connect 12 1 5 0; +#X connect 12 1 1 1; +#X connect 13 0 7 0; +#X connect 15 0 22 0; +#X connect 16 0 15 0; +#X connect 18 0 19 0; +#X connect 18 0 16 0; +#X connect 19 0 17 0; +#X connect 20 0 12 0; +#X connect 21 0 11 0; +#X restore 43 303 pd test-signal; +#X obj 43 359 output~; +#N canvas 388 86 722 350 insample 0; +#N canvas 0 0 450 300 graph1 0; +#X array \$0-sample 155948 float 0; +#X coords 0 1 155947 -1 400 150 1; +#X restore 259 24 graph; +#X obj 19 23 r read-sample; +#X obj 19 74 unpack s f; +#X obj 19 184 soundfiler; +#X text 356 250 read a sample; +#X obj 276 249 loadbang; +#X obj 19 100 t s b; +#X obj 75 99 symbol \$0-sample; +#X obj 19 135 pack s s; +#X msg 19 160 read -resize \$1 \$2; +#X obj 74 46 44100; +#X obj 19 47 t a b; +#X msg 276 273 \; read-sample ../sound/bell.aiff; +#X obj 29 208 s \$0-samplength; +#X obj 116 74 s \$0-insamprate; +#X obj 19 247 /; +#X obj 19 271 * 1000; +#X obj 19 294 s \$0-samp-msec; +#X obj 57 247 r \$0-insamprate; +#X connect 1 0 11 0; +#X connect 2 0 6 0; +#X connect 2 1 14 0; +#X connect 3 0 13 0; +#X connect 3 0 15 0; +#X connect 5 0 12 0; +#X connect 6 0 8 0; +#X connect 6 1 7 0; +#X connect 7 0 8 1; +#X connect 8 0 9 0; +#X connect 9 0 3 0; +#X connect 10 0 14 0; +#X connect 11 0 2 0; +#X connect 11 1 10 0; +#X connect 15 0 16 0; +#X connect 16 0 17 0; +#X connect 18 0 15 1; +#X restore 223 313 pd insample; +#X text 362 406 updated for Pd version 0.39; +#X text 56 43 Here we divide each complex channel in the Fourier analysis +by its own magnitude to "flatten" the spectrum. The "squelch" control +limits the amplitude boost the algorithm will apply. If infinite \, +you'll get a white spectrum. If less \, the louder parts of the spectrum +will be flattened but the quieter ones will only be boosted by the +squelch value.; +#X text 73 6 DYNAMIC RANGE COMPRESSION BY FOURIER ANALYSIS CHANNEL +; +#X floatatom 223 366 5 0 0 0 - #0-samp-msec -; +#X obj 43 282 bng 15 250 50 0 empty empty empty 0 -6 0 8 -262144 -1 +-1; +#X text 62 281 <- record; +#X text 276 365 sample length \, msec; +#X msg 292 183 ../sound/bell.aiff; +#X msg 292 208 ../sound/voice.wav; +#X msg 292 233 ../sound/voice2.wav; +#X text 91 197 <- squelch; +#X text 295 161 change input sound; +#X obj 292 259 s read-sample; +#N canvas 0 110 565 454 hann-window 0; +#N canvas 0 0 450 300 graph1 0; +#X array \$0-hann 1024 float 0; +#X coords 0 1 1023 0 300 100 1; +#X restore 82 311 graph; +#X obj 378 165 osc~; +#X obj 378 190 *~ -0.5; +#X obj 378 214 +~ 0.5; +#X obj 331 247 tabwrite~ \$0-hann; +#X obj 37 88 r window-size; +#X obj 38 173 /; +#X obj 127 142 samplerate~; +#X obj 38 251 s window-sec; +#X obj 177 204 swap; +#X obj 177 228 /; +#X obj 177 252 s window-hz; +#X obj 49 201 * 1000; +#X obj 49 228 s window-msec; +#X obj 38 115 t f b f; +#X msg 173 92 resize \$1; +#X obj 173 116 s \$0-hann; +#X obj 330 105 r window-hz; +#X msg 382 130 0; +#X obj 330 131 t f b; +#X text 15 8 calculate Hann window table (variable window size) and +constants window-hz (fundamental frequency of analysis) \, window-sec +and window-msec (analysis window size in seconds and msec).; +#X connect 1 0 2 0; +#X connect 2 0 3 0; +#X connect 3 0 4 0; +#X connect 5 0 14 0; +#X connect 6 0 8 0; +#X connect 6 0 12 0; +#X connect 7 0 6 1; +#X connect 7 0 9 1; +#X connect 9 0 10 0; +#X connect 9 1 10 1; +#X connect 10 0 11 0; +#X connect 12 0 13 0; +#X connect 14 0 6 0; +#X connect 14 0 9 0; +#X connect 14 1 7 0; +#X connect 14 2 15 0; +#X connect 15 0 16 0; +#X connect 17 0 19 0; +#X connect 18 0 1 1; +#X connect 19 0 1 0; +#X connect 19 1 4 0; +#X connect 19 1 18 0; +#X restore 223 335 pd hann-window; +#X connect 0 0 4 0; +#X connect 0 0 4 1; +#X connect 1 0 2 0; +#X connect 3 0 0 0; +#X connect 10 0 3 0; +#X connect 13 0 18 0; +#X connect 14 0 18 0; +#X connect 15 0 18 0; diff --git a/pd/doc/3.audio.examples/I06.timbre.stamp.pd b/pd/doc/3.audio.examples/I06.timbre.stamp.pd new file mode 100644 index 00000000..0fd540cd --- /dev/null +++ b/pd/doc/3.audio.examples/I06.timbre.stamp.pd @@ -0,0 +1,370 @@ +#N canvas 72 0 668 530 12; +#N canvas 147 0 795 617 fft-analysis 0; +#X obj 94 511 *~; +#X obj 55 511 *~; +#X obj 413 356 *~; +#X obj 372 356 *~; +#X obj 372 379 +~; +#X obj 54 183 *~; +#X obj 54 158 inlet~; +#X obj 54 206 rfft~; +#X obj 54 560 *~; +#X obj 141 245 *~; +#X obj 372 333 rfft~; +#X obj 54 535 rifft~; +#X obj 54 583 outlet~; +#X obj 107 245 *~; +#X obj 107 268 +~; +#X text 458 408 modulus; +#X obj 107 420 *~; +#X obj 600 13 block~ 1024 4; +#X obj 107 398 clip~; +#X obj 87 184 tabreceive~ \$0-hann; +#X obj 599 53 loadbang; +#X obj 148 346 r squelch; +#X obj 147 369 expr 0.01*$f1*$f1; +#X obj 107 294 +~ 1e-20; +#X obj 108 480 *~ 0.00065; +#X obj 87 560 tabreceive~ \$0-hann; +#X obj 373 307 *~; +#X obj 373 282 inlet~; +#X obj 406 308 tabreceive~ \$0-hann; +#X obj 107 321 q8_rsqrt~; +#X obj 372 402 q8_sqrt~; +#X text 458 425 of control; +#X text 456 442 amplitude; +#X text 196 248 reciprocal; +#X text 199 267 modulus of; +#X text 195 287 filter input; +#X text 196 306 amplitude; +#X msg 599 76 \; pd dsp 1 \; window-size 1024 \; squelch 30 \; squelch-set +set 30; +#X text 115 159 filter input; +#X text 438 282 control source; +#X text 434 332 Fourier transform; +#X text 28 17 Internal workings of the timbre stamping algorithm. First +the "filter input" is treated as in the compressor patch \, multiplying +each channel amplitude by one over its modulus (but limited by the +"squelch" parameter.) It is then multiplied by the modulus of the channel +amplitude for the control source (which is Fourier analyzed in parallel +with the filter input.); +#X text 145 422 multiply the two amplitude; +#X text 143 439 factors (for compression; +#X text 145 455 and to apply new timbre); +#X connect 0 0 11 1; +#X connect 1 0 11 0; +#X connect 2 0 4 1; +#X connect 3 0 4 0; +#X connect 4 0 30 0; +#X connect 5 0 7 0; +#X connect 6 0 5 0; +#X connect 7 0 13 0; +#X connect 7 0 13 1; +#X connect 7 0 1 0; +#X connect 7 1 9 0; +#X connect 7 1 9 1; +#X connect 7 1 0 0; +#X connect 8 0 12 0; +#X connect 9 0 14 1; +#X connect 10 0 3 0; +#X connect 10 0 3 1; +#X connect 10 1 2 0; +#X connect 10 1 2 1; +#X connect 11 0 8 0; +#X connect 13 0 14 0; +#X connect 14 0 23 0; +#X connect 16 0 24 0; +#X connect 18 0 16 0; +#X connect 19 0 5 1; +#X connect 20 0 37 0; +#X connect 21 0 22 0; +#X connect 22 0 18 2; +#X connect 23 0 29 0; +#X connect 24 0 0 1; +#X connect 24 0 1 1; +#X connect 25 0 8 1; +#X connect 26 0 10 0; +#X connect 27 0 26 0; +#X connect 28 0 26 1; +#X connect 29 0 18 0; +#X connect 30 0 16 1; +#X restore 86 444 pd fft-analysis; +#X text 137 12 CORT&ZACK's SECRET; +#X text 27 422 filter; +#X text 29 437 input; +#X text 232 441 source; +#X text 233 422 control; +#X floatatom 53 300 0 0 500 0 - squelch-set -; +#X obj 53 324 s squelch; +#X obj 86 468 output~; +#X msg 157 278 ../sound/bell.aiff; +#X msg 157 303 ../sound/voice.wav; +#X msg 157 328 ../sound/voice2.wav; +#X obj 157 354 s read-sound1; +#X msg 373 280 ../sound/bell.aiff; +#X msg 373 305 ../sound/voice.wav; +#X msg 373 330 ../sound/voice2.wav; +#X obj 373 355 s read-sound2; +#X text 386 256 control source; +#X text 169 255 filter input; +#X text 255 231 change input sounds; +#X floatatom 454 409 5 0 0 0 - #0-samp-msec -; +#X obj 87 394 bng 15 250 50 0 empty empty empty 0 -6 0 8 -262144 -1 +-1; +#X obj 215 395 bng 15 250 50 0 empty empty empty 0 -6 0 8 -262144 -1 +-1; +#N canvas 190 43 661 593 test-signals 0; +#X obj 90 444 line~; +#X obj 90 369 f; +#X obj 90 524 outlet~; +#X msg 90 423 0 \, \$1 \$2; +#X obj 90 397 pack 0 0; +#X obj 190 344 /; +#X obj 249 325 * 0.001; +#X obj 90 497 hip~ 5; +#X obj 35 246 loadbang; +#X msg 90 322 1; +#X obj 90 344 metro 1000; +#X obj 191 302 t b b f; +#X obj 117 270 t b f; +#X obj 90 469 tabread4~ \$0-sample; +#X text 21 28 test signal: looped sample playback; +#X obj 40 159 hip~ 5; +#X obj 40 135 adc~ 1; +#X obj 102 159 s insamprate; +#X obj 40 98 inlet; +#X obj 102 135 samplerate~; +#X obj 116 246 r \$0-samplength; +#X obj 191 276 r \$0-insamprate; +#X obj 40 182 tabwrite~ \$0-sample; +#X obj 398 437 line~; +#X obj 398 362 f; +#X obj 398 517 outlet~; +#X msg 398 416 0 \, \$1 \$2; +#X obj 398 390 pack 0 0; +#X obj 498 337 /; +#X obj 557 318 * 0.001; +#X obj 398 490 hip~ 5; +#X obj 343 239 loadbang; +#X msg 398 315 1; +#X obj 398 337 metro 1000; +#X obj 499 295 t b b f; +#X obj 425 263 t b f; +#X obj 348 152 hip~ 5; +#X obj 348 128 adc~ 1; +#X obj 348 91 inlet; +#X obj 410 128 samplerate~; +#X obj 410 152 s insamprate2; +#X obj 348 175 tabwrite~ \$0-sample2; +#X obj 424 239 r \$0-samplength2; +#X obj 499 269 r \$0-insamprate2; +#X obj 398 462 tabread4~ \$0-sample2; +#X connect 0 0 13 0; +#X connect 1 0 4 0; +#X connect 3 0 0 0; +#X connect 4 0 3 0; +#X connect 5 0 4 1; +#X connect 5 0 10 1; +#X connect 6 0 5 1; +#X connect 7 0 2 0; +#X connect 8 0 9 0; +#X connect 9 0 10 0; +#X connect 10 0 1 0; +#X connect 11 0 9 0; +#X connect 11 1 5 0; +#X connect 11 2 6 0; +#X connect 12 0 9 0; +#X connect 12 1 5 0; +#X connect 12 1 1 1; +#X connect 13 0 7 0; +#X connect 15 0 22 0; +#X connect 16 0 15 0; +#X connect 18 0 19 0; +#X connect 18 0 16 0; +#X connect 19 0 17 0; +#X connect 20 0 12 0; +#X connect 21 0 11 0; +#X connect 23 0 44 0; +#X connect 24 0 27 0; +#X connect 26 0 23 0; +#X connect 27 0 26 0; +#X connect 28 0 27 1; +#X connect 28 0 33 1; +#X connect 29 0 28 1; +#X connect 30 0 25 0; +#X connect 31 0 32 0; +#X connect 32 0 33 0; +#X connect 33 0 24 0; +#X connect 34 0 32 0; +#X connect 34 1 28 0; +#X connect 34 2 29 0; +#X connect 35 0 32 0; +#X connect 35 1 28 0; +#X connect 35 1 24 1; +#X connect 36 0 41 0; +#X connect 37 0 36 0; +#X connect 38 0 39 0; +#X connect 38 0 37 0; +#X connect 39 0 40 0; +#X connect 42 0 35 0; +#X connect 43 0 34 0; +#X connect 44 0 30 0; +#X restore 87 415 pd test-signals; +#X text 104 393 <- record ->; +#N canvas 388 86 722 350 insample2 0; +#N canvas 0 0 450 300 graph1 0; +#X array \$0-sample2 62079 float 0; +#X coords 0 1 62078 -1 400 150 1; +#X restore 298 24 graph; +#X obj 19 74 unpack s f; +#X obj 19 184 soundfiler; +#X text 356 250 read a sample; +#X obj 276 249 loadbang; +#X obj 19 100 t s b; +#X obj 19 135 pack s s; +#X msg 19 160 read -resize \$1 \$2; +#X obj 74 46 44100; +#X obj 19 47 t a b; +#X obj 19 247 /; +#X obj 19 271 * 1000; +#X obj 19 23 r read-sound2; +#X obj 116 74 s \$0-insamprate2; +#X obj 75 99 symbol \$0-sample2; +#X obj 29 208 s \$0-samplength2; +#X obj 57 247 r \$0-insamprate2; +#X obj 19 294 s \$0-samp2-msec; +#X msg 276 273 \; read-sound2 ../sound/voice.wav; +#X connect 1 0 5 0; +#X connect 1 1 13 0; +#X connect 2 0 10 0; +#X connect 2 0 15 0; +#X connect 4 0 18 0; +#X connect 5 0 6 0; +#X connect 5 1 14 0; +#X connect 6 0 7 0; +#X connect 7 0 2 0; +#X connect 8 0 13 0; +#X connect 9 0 1 0; +#X connect 9 1 8 0; +#X connect 10 0 11 0; +#X connect 11 0 17 0; +#X connect 12 0 9 0; +#X connect 14 0 6 1; +#X connect 16 0 10 1; +#X restore 334 430 pd insample2; +#N canvas 388 86 722 350 insample1 0; +#N canvas 0 0 450 300 graph1 0; +#X array \$0-sample 155948 float 0; +#X coords 0 1 155947 -1 400 150 1; +#X restore 259 24 graph; +#X obj 19 74 unpack s f; +#X obj 19 184 soundfiler; +#X text 356 250 read a sample; +#X obj 276 249 loadbang; +#X obj 19 100 t s b; +#X obj 75 99 symbol \$0-sample; +#X obj 19 135 pack s s; +#X msg 19 160 read -resize \$1 \$2; +#X obj 74 46 44100; +#X obj 19 47 t a b; +#X obj 29 208 s \$0-samplength; +#X obj 116 74 s \$0-insamprate; +#X obj 19 247 /; +#X obj 19 271 * 1000; +#X obj 19 294 s \$0-samp-msec; +#X obj 57 247 r \$0-insamprate; +#X obj 19 23 r read-sound1; +#X msg 276 273 \; read-sound1 ../sound/bell.aiff; +#X connect 1 0 5 0; +#X connect 1 1 12 0; +#X connect 2 0 11 0; +#X connect 2 0 13 0; +#X connect 4 0 18 0; +#X connect 5 0 7 0; +#X connect 5 1 6 0; +#X connect 6 0 7 1; +#X connect 7 0 8 0; +#X connect 8 0 2 0; +#X connect 9 0 12 0; +#X connect 10 0 1 0; +#X connect 10 1 9 0; +#X connect 13 0 14 0; +#X connect 14 0 15 0; +#X connect 16 0 13 1; +#X connect 17 0 10 0; +#X restore 334 408 pd insample1; +#X floatatom 453 432 5 0 0 0 - #0-samp2-msec -; +#N canvas 0 110 565 454 hann-window 0; +#N canvas 0 0 450 300 graph1 0; +#X array \$0-hann 1024 float 0; +#X coords 0 1 1023 0 300 100 1; +#X restore 82 311 graph; +#X obj 378 165 osc~; +#X obj 378 190 *~ -0.5; +#X obj 378 214 +~ 0.5; +#X obj 331 247 tabwrite~ \$0-hann; +#X obj 37 88 r window-size; +#X obj 38 173 /; +#X obj 127 142 samplerate~; +#X obj 38 251 s window-sec; +#X obj 177 204 swap; +#X obj 177 228 /; +#X obj 177 252 s window-hz; +#X obj 49 201 * 1000; +#X obj 49 228 s window-msec; +#X obj 38 115 t f b f; +#X msg 173 92 resize \$1; +#X obj 173 116 s \$0-hann; +#X obj 330 105 r window-hz; +#X msg 382 130 0; +#X obj 330 131 t f b; +#X text 15 8 calculate Hann window table (variable window size) and +constants window-hz (fundamental frequency of analysis) \, window-sec +and window-msec (analysis window size in seconds and msec).; +#X connect 1 0 2 0; +#X connect 2 0 3 0; +#X connect 3 0 4 0; +#X connect 5 0 14 0; +#X connect 6 0 8 0; +#X connect 6 0 12 0; +#X connect 7 0 6 1; +#X connect 7 0 9 1; +#X connect 9 0 10 0; +#X connect 9 1 10 1; +#X connect 10 0 11 0; +#X connect 12 0 13 0; +#X connect 14 0 6 0; +#X connect 14 0 9 0; +#X connect 14 1 7 0; +#X connect 14 2 15 0; +#X connect 15 0 16 0; +#X connect 17 0 19 0; +#X connect 18 0 1 1; +#X connect 19 0 1 0; +#X connect 19 1 4 0; +#X connect 19 1 18 0; +#X restore 334 455 pd hann-window; +#X text 509 412 sample lengths \,; +#X text 510 427 msec; +#X text 27 35 This is a Fourier-based "vocoder" (perhaps better called +a "timbre stamp") like the one the Convolution brothers use. The "control +source" is analyzed to get its spectral envelope \, which is then stamped +onto the "filter input" by adjusting the amplitudes of its Fourier +transform. The "filter input" is first whitened by the compression +algorithm from the previous patch in this series. The best value of +"squelch" to use depends critically on what kind of sounds are used +for the filter input and the control source.; +#X text 402 498 updated for Pd version 0.39; +#X connect 0 0 8 0; +#X connect 0 0 8 1; +#X connect 6 0 7 0; +#X connect 9 0 12 0; +#X connect 10 0 12 0; +#X connect 11 0 12 0; +#X connect 13 0 16 0; +#X connect 14 0 16 0; +#X connect 15 0 16 0; +#X connect 21 0 23 0; +#X connect 22 0 23 1; +#X connect 23 0 0 0; +#X connect 23 1 0 1; diff --git a/pd/doc/3.audio.examples/I07.phase.vocoder.pd b/pd/doc/3.audio.examples/I07.phase.vocoder.pd new file mode 100644 index 00000000..735b8cd2 --- /dev/null +++ b/pd/doc/3.audio.examples/I07.phase.vocoder.pd @@ -0,0 +1,548 @@ +#N canvas 425 33 744 599 12; +#X floatatom 494 315 5 0 0 0 - transpo-set -; +#X floatatom 167 383 3 0 0 0 - speed-set -; +#X floatatom 55 385 7 0 0 0 - location-set -; +#N canvas 90 42 821 693 fft-analysis 0; +#X obj 51 477 *~; +#X obj 18 477 *~; +#X obj 18 499 -~; +#X obj 167 475 *~; +#X obj 136 475 *~; +#X obj 136 497 +~; +#X obj 109 193 *~; +#X obj 78 193 *~; +#X obj 50 193 *~; +#X obj 19 193 *~; +#X obj 19 218 +~; +#X obj 127 379 *~; +#X obj 20 622 *~; +#X obj 238 430 rfft~; +#X obj 108 161 rfft~; +#X obj 19 564 rifft~; +#X obj 21 646 outlet~; +#X obj 97 379 *~; +#X obj 97 401 +~; +#X obj 124 218 -~; +#X obj 18 431 *~; +#X obj 51 432 *~; +#X obj 127 622 r window-size; +#X obj 426 595 r window-size; +#X obj 426 644 block~; +#X obj 19 349 +~ 1e-15; +#X obj 19 598 *~; +#X obj 52 598 tabreceive~ \$0-hann; +#X obj 127 643 expr 2/(3*$f1); +#X obj 591 563 loadbang; +#X msg 591 589 \; pd dsp 1 \; window-size 2048 \; transpo 0 \; rewind +bang; +#X msg 426 619 set \$1 4; +#X obj 97 425 q8_rsqrt~; +#N canvas 139 105 1006 799 read-windows 0; +#X obj 18 693 *~; +#X obj 340 448 r window-size; +#X obj 156 300 f; +#X obj 102 91 r window-size; +#X obj 102 139 /; +#X obj 195 695 *~; +#X obj 156 255 bang~; +#X obj 17 551 line~; +#X obj 102 164 * 1000; +#X obj 288 224 r speed; +#X obj 178 276 r location; +#X obj 198 302 +; +#X obj 288 272 *; +#X obj 183 470 +; +#X obj 143 446 t f f; +#X msg 17 523 \$1 \, \$2 \$3; +#X obj 17 496 pack 0 0 0; +#X obj 178 371 / 1000; +#X obj 156 394 *; +#X text 188 394 reading location (samples); +#X obj 51 597 / 4; +#X obj 288 245 * 0.01; +#X floatatom 340 498 7 0 0 0 - - -; +#X obj 340 474 *; +#X obj 499 365 r transpo; +#X obj 499 387 * 0.01; +#X obj 501 408 + 69; +#X obj 502 429 mtof; +#X obj 502 451 / 440; +#X obj 375 474 t b f; +#X obj 19 719 outlet~; +#X obj 195 720 outlet~; +#X obj 218 664 tabreceive~ \$0-hann; +#X obj 803 386 r location; +#X msg 803 409 0; +#X obj 803 432 s speed; +#X obj 768 508 r speed; +#X msg 768 532 set \$1; +#X obj 768 557 s speed-set; +#X text 411 498 stretched window size (samples); +#X obj 877 507 r transpo; +#X msg 877 533 set \$1; +#X obj 877 558 s transpo-set; +#X obj 808 94 r location; +#X msg 826 278 set \$1; +#X obj 808 140 t b f; +#X obj 826 257 f; +#X obj 754 171 int; +#X obj 754 203 sel 0; +#X msg 813 174 1; +#X msg 813 197 0; +#X obj 754 228 del 300; +#X obj 826 302 s location-set; +#X obj 17 637 tabread4~ \$0-sample; +#X obj 194 637 tabread4~ \$0-sample; +#X obj 178 347 r \$0-insamprate; +#X obj 528 586 r rewind; +#X msg 528 744 \; location \$1; +#X floatatom 111 187 5 0 0 0 - - -; +#X obj 102 115 t f b; +#X obj 142 139 samplerate~; +#X obj 102 208 / 4; +#X obj 233 306 s see-loc; +#X obj 817 116 r see-loc; +#X obj 193 420 / 2; +#X obj 156 420 -; +#X text 229 417 back up 1/2 window; +#X obj 16 597 -~; +#X text 43 6 Read two windows out of the recorded sample \, one 1/4 +ahead of the other. The mid point of the front window is specified +by "location". If "speed" is nonzero \, "location" automatically precesses. +; +#X obj 528 720 * -0.5; +#X text 91 587 "back" window 1/4 cycle behind "front" one; +#X text 137 205 computation period (msec) for overlap of 4; +#X text 164 186 msec in a window; +#X obj 528 666 /; +#X obj 528 691 * 1000; +#X obj 528 642 t f b; +#X obj 568 666 samplerate~; +#X obj 528 619 f; +#X msg 845 711 \; rewind bang \; speed \$1; +#X obj 845 684 r auto; +#X obj 730 685 r no-detune; +#X msg 730 707 \; detune 0; +#X text 326 275 loop to precess the location according; +#X text 325 291 to the "speed" parameter.; +#X text 611 31 if location changes \, update number box; +#X text 610 50 in main window via "location-set" \, but; +#X text 613 69 taking care to limit frequency of updates.; +#X text 756 462 reflect control changes; +#X text 756 479 in main window.; +#X text 754 344 setting location by hand; +#X text 752 362 sets speed to zero.; +#X text 760 653 misc controls; +#X text 496 527 "rewind" control takes us; +#X text 499 545 to a location depending on; +#X text 499 564 stretched window size.; +#X connect 0 0 30 0; +#X connect 1 0 23 0; +#X connect 2 0 11 0; +#X connect 2 0 18 0; +#X connect 3 0 59 0; +#X connect 4 0 8 0; +#X connect 5 0 31 0; +#X connect 6 0 2 0; +#X connect 7 0 67 0; +#X connect 7 0 54 0; +#X connect 8 0 58 0; +#X connect 8 0 61 0; +#X connect 9 0 21 0; +#X connect 10 0 2 1; +#X connect 11 0 2 1; +#X connect 11 0 62 0; +#X connect 12 0 11 1; +#X connect 13 0 16 1; +#X connect 14 0 16 0; +#X connect 14 1 13 0; +#X connect 15 0 7 0; +#X connect 16 0 15 0; +#X connect 17 0 18 1; +#X connect 18 0 65 0; +#X connect 20 0 67 1; +#X connect 21 0 12 0; +#X connect 22 0 20 0; +#X connect 22 0 13 1; +#X connect 22 0 64 0; +#X connect 22 0 77 1; +#X connect 23 0 22 0; +#X connect 24 0 25 0; +#X connect 25 0 26 0; +#X connect 26 0 27 0; +#X connect 27 0 28 0; +#X connect 28 0 29 0; +#X connect 29 0 23 0; +#X connect 29 1 23 1; +#X connect 32 0 5 1; +#X connect 32 0 0 1; +#X connect 33 0 34 0; +#X connect 34 0 35 0; +#X connect 36 0 37 0; +#X connect 37 0 38 0; +#X connect 40 0 41 0; +#X connect 41 0 42 0; +#X connect 43 0 45 0; +#X connect 44 0 52 0; +#X connect 45 0 47 0; +#X connect 45 1 46 1; +#X connect 46 0 44 0; +#X connect 47 0 48 0; +#X connect 48 0 49 0; +#X connect 48 0 51 0; +#X connect 49 0 47 1; +#X connect 50 0 47 1; +#X connect 51 0 50 0; +#X connect 51 0 46 0; +#X connect 53 0 0 0; +#X connect 54 0 5 0; +#X connect 55 0 17 0; +#X connect 56 0 77 0; +#X connect 59 0 4 0; +#X connect 59 1 60 0; +#X connect 60 0 4 1; +#X connect 61 0 16 2; +#X connect 61 0 12 1; +#X connect 63 0 45 0; +#X connect 64 0 65 1; +#X connect 65 0 14 0; +#X connect 67 0 53 0; +#X connect 69 0 57 0; +#X connect 73 0 74 0; +#X connect 74 0 69 0; +#X connect 75 0 73 0; +#X connect 75 1 76 0; +#X connect 76 0 73 1; +#X connect 77 0 75 0; +#X connect 79 0 78 0; +#X connect 80 0 81 0; +#X restore 109 133 pd read-windows; +#X obj 137 543 tabsend~ prev-imag; +#X obj 136 567 tabsend~ prev-real; +#X obj 20 8 tabreceive~ prev-real; +#X obj 73 29 tabreceive~ prev-imag; +#X text 272 5 recall previous output amplitude. Its phase will be added +to the phase difference we measure from two windows in the the recorded +sound.; +#X obj 121 69 *~; +#X obj 89 69 *~; +#X obj 89 91 +~; +#X obj 159 94 q8_rsqrt~; +#X obj 159 71 +~ 1e-20; +#X obj 73 119 *~; +#X obj 19 118 *~; +#X obj 181 290 r lock; +#X obj 29 245 lrshift~ 1; +#X obj 24 269 lrshift~ -1; +#X obj 141 245 lrshift~ 1; +#X obj 133 269 lrshift~ -1; +#X obj 35 300 *~; +#X obj 159 312 *~; +#X obj 19 325 +~; +#X obj 125 331 +~; +#X text 247 66 divide by the magnitude to make a unit-magnitude complex +amplitude (phase only). The 1e-20 is to prevent overflows. q8_rsqrt~ +is reciprocal square root.; +#X text 247 165 Take FT of the window in back. Multiply its conjugate +by the normalized previous output. The result has the magnitude of +the input sound and phase (previous output phase) minus (back window +phase).; +#X text 249 370 Normalize again \, this time taking care to salt each +channel with 1e-15 so that we get a unit complex number even if everything +was zero heretofore.; +#X text 288 427 Now take the FT of the forward window and multiply +it by the unit complex number from above. The magnitude will be that +of the forward window and the phase will be the previous output phase +plus the phase difference between the two analysis windows -- except +that if "lock" is on \, they will be modified to agree progressively +better with the inter-channel phase relationships of the input.; +#X text 249 242 If "lock" is on \, encourage neighboring channels to +stay in phase by adding the two neighboring complex amplitudes. The +result will tend toward the channel with the strongest amplitude. If +the phase relationships between channels in the output and those in +the input are in parallel \, then neighboring channels of the quotient +will all have the same phase and this will not change any phases. (lrshift +shifts the signal to the left or right depending on its argument.) +; +#X text 387 560 'set' message to block; +#X text 390 577 allows variable size; +#X text 259 126 Read two windows \, one 1/4 length behind the other +\, of the input sound \, with Hann window function (see inside).; +#X connect 0 0 2 1; +#X connect 1 0 2 0; +#X connect 2 0 35 0; +#X connect 2 0 15 0; +#X connect 3 0 5 1; +#X connect 4 0 5 0; +#X connect 5 0 34 0; +#X connect 5 0 15 1; +#X connect 6 0 19 1; +#X connect 7 0 19 0; +#X connect 8 0 10 1; +#X connect 9 0 10 0; +#X connect 10 0 48 0; +#X connect 10 0 47 0; +#X connect 10 0 53 0; +#X connect 11 0 18 1; +#X connect 12 0 16 0; +#X connect 13 0 1 1; +#X connect 13 0 3 1; +#X connect 13 1 0 1; +#X connect 13 1 4 1; +#X connect 14 0 9 1; +#X connect 14 0 7 1; +#X connect 14 1 6 1; +#X connect 14 1 8 1; +#X connect 15 0 26 0; +#X connect 17 0 18 0; +#X connect 18 0 32 0; +#X connect 19 0 49 0; +#X connect 19 0 50 0; +#X connect 19 0 54 0; +#X connect 20 0 1 0; +#X connect 20 0 4 0; +#X connect 21 0 0 0; +#X connect 21 0 3 0; +#X connect 22 0 28 0; +#X connect 23 0 31 0; +#X connect 25 0 17 1; +#X connect 25 0 17 0; +#X connect 25 0 20 0; +#X connect 26 0 12 0; +#X connect 27 0 26 1; +#X connect 28 0 12 1; +#X connect 29 0 30 0; +#X connect 31 0 24 0; +#X connect 32 0 20 1; +#X connect 32 0 21 1; +#X connect 33 0 14 0; +#X connect 33 1 13 0; +#X connect 36 0 40 1; +#X connect 36 0 40 0; +#X connect 36 0 45 0; +#X connect 37 0 39 1; +#X connect 37 0 39 0; +#X connect 37 0 44 0; +#X connect 39 0 41 1; +#X connect 40 0 41 0; +#X connect 41 0 43 0; +#X connect 42 0 44 1; +#X connect 42 0 45 1; +#X connect 43 0 42 0; +#X connect 44 0 8 0; +#X connect 44 0 7 0; +#X connect 45 0 9 0; +#X connect 45 0 6 0; +#X connect 46 0 51 1; +#X connect 46 0 52 1; +#X connect 47 0 51 0; +#X connect 48 0 51 0; +#X connect 49 0 52 0; +#X connect 50 0 52 0; +#X connect 51 0 53 1; +#X connect 52 0 54 1; +#X connect 53 0 25 0; +#X connect 54 0 11 0; +#X connect 54 0 11 1; +#X connect 54 0 21 0; +#X restore 55 480 pd fft-analysis; +#N canvas 260 23 647 768 phase-tables 0; +#N canvas 0 0 450 300 graph2 0; +#X array prev-imag 4096 float 0; +#X coords 0 1000 4096 -1000 400 300 1; +#X restore 169 326 graph; +#N canvas 0 0 450 300 graph3 0; +#X array prev-real 4096 float 0; +#X coords 0 500 4096 -500 400 300 1; +#X restore 170 17 graph; +#X restore 440 504 pd phase-tables; +#X obj 494 338 s transpo; +#X text 164 364 hundredths; +#X text 493 294 in cents; +#X text 389 359 normal; +#X obj 56 517 output~; +#N canvas 0 110 565 454 hann-window 0; +#N canvas 0 0 450 300 graph1 0; +#X array \$0-hann 1024 float 0; +#X coords 0 1 1023 0 300 100 1; +#X restore 82 311 graph; +#X obj 378 165 osc~; +#X obj 378 190 *~ -0.5; +#X obj 378 214 +~ 0.5; +#X obj 331 247 tabwrite~ \$0-hann; +#X obj 37 88 r window-size; +#X obj 38 173 /; +#X obj 127 142 samplerate~; +#X obj 38 251 s window-sec; +#X obj 177 204 swap; +#X obj 177 228 /; +#X obj 177 252 s window-hz; +#X obj 49 201 * 1000; +#X obj 49 228 s window-msec; +#X obj 38 115 t f b f; +#X msg 173 92 resize \$1; +#X obj 173 116 s \$0-hann; +#X obj 330 105 r window-hz; +#X msg 382 130 0; +#X obj 330 131 t f b; +#X text 15 8 calculate Hann window table (variable window size) and +constants window-hz (fundamental frequency of analysis) \, window-sec +and window-msec (analysis window size in seconds and msec).; +#X connect 1 0 2 0; +#X connect 2 0 3 0; +#X connect 3 0 4 0; +#X connect 5 0 14 0; +#X connect 6 0 8 0; +#X connect 6 0 12 0; +#X connect 7 0 6 1; +#X connect 7 0 9 1; +#X connect 9 0 10 0; +#X connect 9 1 10 1; +#X connect 10 0 11 0; +#X connect 12 0 13 0; +#X connect 14 0 6 0; +#X connect 14 0 9 0; +#X connect 14 1 7 0; +#X connect 14 2 15 0; +#X connect 15 0 16 0; +#X connect 17 0 19 0; +#X connect 18 0 1 1; +#X connect 19 0 1 0; +#X connect 19 1 4 0; +#X connect 19 1 18 0; +#X restore 440 528 pd hann-window; +#N canvas 388 86 694 447 insample 0; +#N canvas 0 0 450 300 graph1 0; +#X array \$0-sample 160161 float 0; +#X coords 0 1 160160 -1 400 150 1; +#X restore 281 135 graph; +#X obj 28 133 r read-sample; +#X obj 28 184 unpack s f; +#X obj 28 294 soundfiler; +#X text 365 360 read a sample; +#X obj 285 359 loadbang; +#X obj 28 210 t s b; +#X obj 84 209 symbol \$0-sample; +#X obj 28 245 pack s s; +#X msg 28 270 read -resize \$1 \$2; +#X obj 83 156 44100; +#X obj 28 157 t a b; +#X obj 38 318 s \$0-samplength; +#X obj 125 184 s \$0-insamprate; +#X obj 28 357 /; +#X obj 28 381 * 1000; +#X obj 28 404 s \$0-samp-msec; +#X obj 66 357 r \$0-insamprate; +#X obj 29 70 hip~ 5; +#X obj 29 46 adc~ 1; +#X obj 29 9 inlet; +#X obj 91 46 samplerate~; +#X obj 29 93 tabwrite~ \$0-sample; +#X obj 91 70 s \$0-insamprate; +#X msg 285 383 \; read-sample ../sound/voice.wav; +#X obj 276 20 inlet; +#X obj 276 42 openpanel; +#X obj 276 67 s read-sample; +#X connect 1 0 11 0; +#X connect 2 0 6 0; +#X connect 2 1 13 0; +#X connect 3 0 12 0; +#X connect 3 0 14 0; +#X connect 5 0 24 0; +#X connect 6 0 8 0; +#X connect 6 1 7 0; +#X connect 7 0 8 1; +#X connect 8 0 9 0; +#X connect 9 0 3 0; +#X connect 10 0 13 0; +#X connect 11 0 2 0; +#X connect 11 1 10 0; +#X connect 14 0 15 0; +#X connect 15 0 16 0; +#X connect 17 0 14 1; +#X connect 18 0 22 0; +#X connect 19 0 18 0; +#X connect 20 0 21 0; +#X connect 20 0 19 0; +#X connect 21 0 23 0; +#X connect 25 0 26 0; +#X connect 26 0 27 0; +#X restore 441 480 pd insample; +#X floatatom 552 480 5 0 0 0 - #0-samp-msec -; +#X msg 229 486 ../sound/bell.aiff; +#X msg 229 511 ../sound/voice.wav; +#X msg 229 536 ../sound/voice2.wav; +#X obj 229 562 s read-sample; +#X obj 441 439 bng 15 250 50 0 empty empty empty 0 -6 0 8 -262144 -1 +-1; +#X text 460 438 <- record; +#X obj 493 387 tgl 15 0 empty empty empty 0 -6 0 8 -262144 -1 -1 0 +1; +#X obj 55 407 s location; +#X obj 167 407 s speed; +#X obj 262 386 bng 15 250 50 0 empty empty empty 0 -6 0 8 -262144 -1 +-1; +#X obj 262 408 s rewind; +#X msg 345 336 200; +#X msg 345 358 100; +#X msg 345 380 20; +#X text 386 335 contract; +#X text 390 380 expand; +#X obj 493 407 s lock; +#X text 494 277 detune; +#X text 55 330 location; +#X text 52 346 (stops; +#X text 57 361 motion); +#X text 165 348 motion in; +#X text 232 464 read input sound; +#X text 103 7 PHASE VOCODER FOR TIME STETCHING AND CONTRACTION; +#X text 604 479 length \, msec; +#X floatatom 607 419 5 0 0 0 - window-size -; +#X msg 607 307 512; +#X msg 607 329 1024; +#X msg 607 351 2048; +#X msg 607 373 4096; +#X obj 607 395 s window-size; +#X text 607 274 window size \,; +#X text 607 289 samples; +#X text 648 306 <- set; +#X text 100 306 ------- location controls -------; +#X text 660 419 (check); +#X obj 345 407 s auto; +#X text 23 35 This patch takes a sound \, analyzes windows in it both +for channel magnitude and for phase precession in each channel (compared +to another operlapping window). The real-time output recreates the +same magnitudes and phase precession \, althought the phases themselves +are in general different. You can control either the location or its +motion (setting location stops motion \, while setting a non-zero motion +causes the location to change automatically). "Rewind" goes back to +the beginning. You can use different window sizes (use the message +boxes - the number box is for readout). The "lock" feature forces phase +coherency between neighboring channels \, which makes a more present +sound but can add artifacts to the sound. Look in "pd fft-analysis" +to see the workings.; +#X text 483 568 updated for Pd version 0.39; +#X obj 551 316 bng 15 250 50 0 no-detune empty empty 0 -6 0 8 -262144 +-1 -1; +#X obj 535 460 bng 15 250 50 0 empty empty empty 0 -6 0 8 -262144 -1 +-1; +#X text 466 458 file ->; +#X connect 0 0 5 0; +#X connect 1 0 21 0; +#X connect 2 0 20 0; +#X connect 3 0 9 0; +#X connect 3 0 9 1; +#X connect 13 0 16 0; +#X connect 14 0 16 0; +#X connect 15 0 16 0; +#X connect 17 0 11 0; +#X connect 19 0 29 0; +#X connect 22 0 23 0; +#X connect 24 0 49 0; +#X connect 25 0 49 0; +#X connect 26 0 49 0; +#X connect 39 0 43 0; +#X connect 40 0 43 0; +#X connect 41 0 43 0; +#X connect 42 0 43 0; +#X connect 53 0 11 1; diff --git a/pd/doc/3.audio.examples/I08.pvoc.reverb.pd b/pd/doc/3.audio.examples/I08.pvoc.reverb.pd new file mode 100644 index 00000000..6898c216 --- /dev/null +++ b/pd/doc/3.audio.examples/I08.pvoc.reverb.pd @@ -0,0 +1,421 @@ +#N canvas 502 83 570 415 12; +#N canvas 105 328 986 609 fft 0; +#X obj 18 500 *~; +#X obj 291 455 *~; +#X obj 258 454 *~; +#X obj 356 456 *~; +#X obj 324 455 *~; +#X obj 324 477 +~; +#X obj 258 479 -~; +#X obj 560 383 *~; +#X obj 54 124 *~; +#X obj 22 124 *~; +#X obj 22 145 +~; +#X obj 325 82 *~; +#X obj 293 82 *~; +#X obj 608 312 *~; +#X obj 576 312 *~; +#X obj 93 63 *~; +#X obj 18 522 outlet~; +#X obj 18 475 *~; +#X obj 126 63 inlet~; +#X obj 93 84 rfft~; +#X obj 18 451 rifft~; +#X obj 576 334 rsqrt~; +#X obj 293 103 +~; +#X obj 484 383 *~; +#X obj 56 499 sig~ 0.0002; +#N canvas 167 161 699 396 decision 0; +#X obj 49 101 inlet~; +#X obj 50 341 outlet~; +#X obj 50 183 -~; +#X obj 50 226 clip~ 0 1; +#X obj 50 204 *~ 1e+20; +#X obj 196 98 inlet~; +#X text 137 213 stronger than; +#X text 139 228 old one; +#X obj 274 202 -~; +#X obj 288 177 lrshift~ 1; +#X obj 274 250 clip~ 0 1; +#X obj 274 228 *~ 1e+20; +#X obj 450 202 -~; +#X obj 450 250 clip~ 0 1; +#X obj 450 228 *~ 1e+20; +#X obj 464 177 lrshift~ -1; +#X obj 50 283 *~; +#X obj 50 312 *~; +#X text 135 199 1 if new signal; +#X text 55 73 new; +#X text 203 70 old; +#X text 51 12 Choose whether to replace the "lod" signal with the "new" +one. The "new" one must be stronger than the old one and also must +be stronger than its two neighboring channels; +#X text 267 283 1 if we're louder than neighbor; +#X connect 0 0 2 0; +#X connect 0 0 9 0; +#X connect 0 0 8 0; +#X connect 0 0 12 0; +#X connect 0 0 15 0; +#X connect 2 0 4 0; +#X connect 3 0 16 0; +#X connect 4 0 3 0; +#X connect 5 0 2 1; +#X connect 8 0 11 0; +#X connect 9 0 8 1; +#X connect 10 0 16 1; +#X connect 11 0 10 0; +#X connect 12 0 14 0; +#X connect 13 0 17 1; +#X connect 14 0 13 0; +#X connect 15 0 12 1; +#X connect 16 0 17 0; +#X connect 17 0 1 0; +#X restore 23 172 pd decision; +#X obj 576 356 *~; +#N canvas 276 481 755 363 divide-by-prev 0; +#X obj 283 99 inlet~; +#X obj 385 101 inlet~; +#X obj 284 249 outlet~; +#X obj 386 249 outlet~; +#X obj 107 251 outlet~; +#X obj 208 253 outlet~; +#X obj 250 180 *~; +#X obj 217 180 *~; +#X obj 182 181 *~; +#X obj 149 181 *~; +#X obj 149 203 +~; +#X obj 217 202 -~; +#X obj 92 49 tabreceive~ \$0-last-real; +#X obj 190 72 tabreceive~ \$0-last-imag; +#X connect 0 0 2 0; +#X connect 0 0 9 0; +#X connect 0 0 6 0; +#X connect 1 0 3 0; +#X connect 1 0 8 0; +#X connect 1 0 7 0; +#X connect 6 0 11 1; +#X connect 7 0 11 0; +#X connect 8 0 10 1; +#X connect 9 0 10 0; +#X connect 10 0 4 0; +#X connect 11 0 5 0; +#X connect 12 0 9 1; +#X connect 12 0 7 1; +#X connect 13 0 8 1; +#X connect 13 0 6 1; +#X restore 603 192 pd divide-by-prev; +#N canvas 650 183 602 327 switch 0; +#X obj 19 163 inlet~; +#X obj 107 99 inlet~; +#X obj 169 100 inlet~; +#X obj 273 97 inlet~; +#X obj 333 97 inlet~; +#X obj 367 185 -~; +#X obj 338 231 +~; +#X obj 372 229 *~; +#X obj 250 182 -~; +#X obj 220 228 +~; +#X obj 254 228 *~; +#X obj 219 278 outlet~; +#X obj 338 274 outlet~; +#X text 46 28 switch between two pairs of inputs. If first inlet is +one \, take the left-hand pair \, otherwise the right-hand one.; +#X text 15 140 switch; +#X text 92 76 pass this if one; +#X text 269 77 pass this if zero; +#X connect 0 0 10 1; +#X connect 0 0 7 1; +#X connect 1 0 8 0; +#X connect 2 0 5 0; +#X connect 3 0 9 0; +#X connect 3 0 8 1; +#X connect 4 0 6 0; +#X connect 4 0 5 1; +#X connect 5 0 7 0; +#X connect 6 0 12 0; +#X connect 7 0 6 1; +#X connect 8 0 10 0; +#X connect 9 0 11 0; +#X connect 10 0 9 1; +#X restore 327 275 pd switch; +#N canvas 650 183 602 327 switch 0; +#X obj 19 163 inlet~; +#X obj 107 99 inlet~; +#X obj 169 100 inlet~; +#X obj 273 97 inlet~; +#X obj 333 97 inlet~; +#X obj 367 185 -~; +#X obj 338 231 +~; +#X obj 372 229 *~; +#X obj 250 182 -~; +#X obj 220 228 +~; +#X obj 254 228 *~; +#X obj 219 278 outlet~; +#X obj 338 274 outlet~; +#X text 46 28 switch between two pairs of inputs. If first inlet is +one \, take the left-hand pair \, otherwise the right-hand one.; +#X text 15 140 switch; +#X text 92 76 pass this if one; +#X text 269 77 pass this if zero; +#X connect 0 0 10 1; +#X connect 0 0 7 1; +#X connect 1 0 8 0; +#X connect 2 0 5 0; +#X connect 3 0 9 0; +#X connect 3 0 8 1; +#X connect 4 0 6 0; +#X connect 4 0 5 1; +#X connect 5 0 7 0; +#X connect 6 0 12 0; +#X connect 7 0 6 1; +#X connect 8 0 10 0; +#X connect 9 0 11 0; +#X connect 10 0 9 1; +#X restore 484 266 pd switch; +#X obj 655 270 r revtime; +#X obj 54 476 tabreceive~ \$0-hann; +#X obj 94 35 tabreceive~ \$0-hann; +#X obj 505 112 tabreceive~ \$0-inc-real; +#X obj 587 134 tabreceive~ \$0-inc-imag; +#X obj 752 220 tabsend~ \$0-last-imag; +#X obj 702 243 tabsend~ \$0-last-real; +#X obj 559 426 tabsend~ \$0-inc-imag; +#X obj 484 449 tabsend~ \$0-inc-real; +#X msg 665 293 set \$1; +#X obj 665 317 s revtime-set; +#X obj 800 483 loadbang; +#X msg 800 509 \; pd dsp 1 \; window-size 4096 \; revtime 20; +#X obj 800 411 r window-size; +#X msg 800 433 set \$1 4; +#X obj 800 455 block~; +#X obj 655 341 expr 1 - 0.2/max(0.2 \, $f1); +#X text 20 206 choose whether to; +#X text 18 224 punch in new (amplitude \,; +#X text 16 243 increment) pair; +#X obj 367 26 tabreceive~ \$0-amp-real; +#X obj 443 50 tabreceive~ \$0-amp-imag; +#X obj 325 537 tabsend~ \$0-amp-imag; +#X obj 258 560 tabsend~ \$0-amp-real; +#X text 361 6 previous output amplitude \, encoding both magnitude +and phase; +#X text 453 87 previous phase increment (unit-magnitude complex number) +; +#X obj 506 134 +~ 1e-15; +#X obj 366 50 +~ 1e-15; +#X text 363 482 propagate amplitudes by multiplying in the; +#X text 361 499 increments \, which advance the phase and drop; +#X text 365 514 magnitude according to revtime.; +#X text 608 370 normalize increments between 0 and; +#X text 606 388 1 according to revtime.; +#X text 78 453 IFFT and output; +#X connect 0 0 16 0; +#X connect 1 0 6 1; +#X connect 2 0 6 0; +#X connect 3 0 5 1; +#X connect 4 0 5 0; +#X connect 5 0 52 0; +#X connect 6 0 53 0; +#X connect 7 0 1 0; +#X connect 7 0 3 0; +#X connect 7 0 37 0; +#X connect 8 0 10 1; +#X connect 9 0 10 0; +#X connect 10 0 25 0; +#X connect 11 0 22 1; +#X connect 12 0 22 0; +#X connect 13 0 21 0; +#X connect 14 0 21 0; +#X connect 15 0 19 0; +#X connect 17 0 0 0; +#X connect 18 0 15 1; +#X connect 19 0 9 0; +#X connect 19 0 9 1; +#X connect 19 0 27 0; +#X connect 19 0 28 1; +#X connect 19 1 8 0; +#X connect 19 1 8 1; +#X connect 19 1 27 1; +#X connect 19 1 28 2; +#X connect 20 0 17 0; +#X connect 21 0 26 0; +#X connect 22 0 25 1; +#X connect 23 0 2 0; +#X connect 23 0 4 0; +#X connect 23 0 38 0; +#X connect 24 0 0 1; +#X connect 25 0 28 0; +#X connect 25 0 29 0; +#X connect 26 0 23 1; +#X connect 26 0 7 1; +#X connect 27 0 29 1; +#X connect 27 1 29 2; +#X connect 27 2 36 0; +#X connect 27 3 35 0; +#X connect 28 0 20 0; +#X connect 28 0 3 1; +#X connect 28 0 2 1; +#X connect 28 1 20 1; +#X connect 28 1 1 1; +#X connect 28 1 4 1; +#X connect 29 0 14 0; +#X connect 29 0 14 1; +#X connect 29 0 23 0; +#X connect 29 1 13 0; +#X connect 29 1 13 1; +#X connect 29 1 7 0; +#X connect 30 0 39 0; +#X connect 30 0 46 0; +#X connect 31 0 17 1; +#X connect 32 0 15 0; +#X connect 33 0 56 0; +#X connect 34 0 29 4; +#X connect 39 0 40 0; +#X connect 41 0 42 0; +#X connect 43 0 44 0; +#X connect 44 0 45 0; +#X connect 46 0 26 1; +#X connect 50 0 57 0; +#X connect 51 0 11 0; +#X connect 51 0 11 1; +#X connect 51 0 28 4; +#X connect 56 0 29 3; +#X connect 57 0 12 0; +#X connect 57 0 12 1; +#X connect 57 0 28 3; +#X restore 141 301 pd fft; +#X floatatom 377 233 0 0 1000 0 - revtime-set -; +#X floatatom 68 239 0 0 0 0 - - -; +#X text 131 9 PIANO REVERB; +#X text 418 236 reverb time; +#X obj 141 331 output~; +#X obj 36 333 output~; +#X text 23 25 This is a phase vocoder acting as a reverberator. The +sound is more coherent (less "whispered") than a real room or a standard +delay-based reverberator.; +#X text 25 80 The technique is to "punch" the incoming sound into channels +where (1) there's a peak \, and (2) the incoming sound drowns out whatever +might already be there. If the sound already in any channel is louder +than the input the input for that channel is ignored.; +#N canvas 0 0 508 303 test-sound 0; +#X obj 35 33 inlet; +#X obj 36 144 osc~; +#X obj 164 173 line~; +#X floatatom 36 95 0 0 0 0 - - -; +#X obj 37 71 mtof; +#X obj 36 169 cos~; +#X obj 36 193 hip~ 20; +#X obj 36 118 t f b; +#X obj 164 63 bng 15 250 50 0 empty empty empty 0 -6 0 8 -262144 -1 +-1; +#X obj 209 144 pack 0 30; +#X obj 194 90 del 20; +#X obj 164 116 pack 1 20; +#X obj 38 224 *~; +#X obj 42 270 outlet~; +#X connect 0 0 4 0; +#X connect 1 0 5 0; +#X connect 2 0 12 1; +#X connect 3 0 7 0; +#X connect 4 0 3 0; +#X connect 5 0 6 0; +#X connect 6 0 12 0; +#X connect 7 0 1 0; +#X connect 7 1 8 0; +#X connect 8 0 10 0; +#X connect 8 0 11 0; +#X connect 9 0 2 0; +#X connect 10 0 9 0; +#X connect 11 0 2 0; +#X connect 12 0 13 0; +#X restore 68 266 pd test-sound; +#X text 56 217 short tone; +#X obj 377 257 s revtime; +#X text 24 164 For each window \, the amplitude in each channel is +propagated by a constant phase increment and multiplied downward by +a gain that determines the "reverb time".; +#N canvas 0 110 565 454 hann-window 0; +#N canvas 0 0 450 300 graph1 0; +#X array \$0-hann 4096 float 0; +#X coords 0 1 4095 0 300 100 1; +#X restore 82 311 graph; +#X obj 378 165 osc~; +#X obj 378 190 *~ -0.5; +#X obj 378 214 +~ 0.5; +#X obj 331 247 tabwrite~ \$0-hann; +#X obj 37 88 r window-size; +#X obj 38 173 /; +#X obj 127 142 samplerate~; +#X obj 38 251 s window-sec; +#X obj 177 204 swap; +#X obj 177 228 /; +#X obj 177 252 s window-hz; +#X obj 49 201 * 1000; +#X obj 49 228 s window-msec; +#X obj 38 115 t f b f; +#X msg 173 92 resize \$1; +#X obj 173 116 s \$0-hann; +#X obj 330 105 r window-hz; +#X msg 382 130 0; +#X obj 330 131 t f b; +#X text 15 8 calculate Hann window table (variable window size) and +constants window-hz (fundamental frequency of analysis) \, window-sec +and window-msec (analysis window size in seconds and msec).; +#X connect 1 0 2 0; +#X connect 2 0 3 0; +#X connect 3 0 4 0; +#X connect 5 0 14 0; +#X connect 6 0 8 0; +#X connect 6 0 12 0; +#X connect 7 0 6 1; +#X connect 7 0 9 1; +#X connect 9 0 10 0; +#X connect 9 1 10 1; +#X connect 10 0 11 0; +#X connect 12 0 13 0; +#X connect 14 0 6 0; +#X connect 14 0 9 0; +#X connect 14 1 7 0; +#X connect 14 2 15 0; +#X connect 15 0 16 0; +#X connect 17 0 19 0; +#X connect 18 0 1 1; +#X connect 19 0 1 0; +#X connect 19 1 4 0; +#X connect 19 1 18 0; +#X restore 360 305 pd hann-window; +#N canvas 52 71 774 520 tables 0; +#N canvas 0 0 450 300 graph1 0; +#X array \$0-last-real 2048 float 0; +#X coords 0 500 2048 -500 200 150 1; +#X restore 103 15 graph; +#N canvas 0 0 450 300 graph2 0; +#X array \$0-last-imag 2048 float 0; +#X coords 0 500 2048 500 200 150 1; +#X restore 497 6 graph; +#N canvas 0 0 450 300 graph1 0; +#X array \$0-amp-real 2048 float 0; +#X coords 0 500 2048 -500 200 150 1; +#X restore 105 185 graph; +#N canvas 0 0 450 300 graph2 0; +#X array \$0-amp-imag 2048 float 0; +#X coords 0 500 2048 -500 200 150 1; +#X restore 501 178 graph; +#N canvas 0 0 450 300 graph1 0; +#X array \$0-inc-real 2048 float 0; +#X coords 0 1 2048 -1 200 150 1; +#X restore 105 357 graph; +#N canvas 0 0 450 300 graph2 0; +#X array \$0-inc-imag 2048 float 0; +#X coords 0 1 2048 -1 200 150 1; +#X restore 503 342 graph; +#X restore 360 326 pd tables; +#X text 307 383 Updated for Pd version 0.39; +#X text 26 389 reverb in; +#X text 133 388 reverb out; +#X connect 0 0 5 0; +#X connect 0 0 5 1; +#X connect 1 0 11 0; +#X connect 2 0 9 0; +#X connect 9 0 0 0; +#X connect 9 0 6 0; +#X connect 9 0 6 1; diff --git a/pd/doc/3.audio.examples/I09.sheep.from.goats.pd b/pd/doc/3.audio.examples/I09.sheep.from.goats.pd new file mode 100644 index 00000000..87a779ed --- /dev/null +++ b/pd/doc/3.audio.examples/I09.sheep.from.goats.pd @@ -0,0 +1,411 @@ +#N canvas -6 5 609 588 12; +#N canvas 300 81 867 775 fft-analysis 0; +#X obj 85 664 *~; +#X obj 35 712 *~; +#X obj 316 148 *~; +#X obj 34 58 *~; +#X obj 34 35 inlet~; +#X obj 34 82 rfft~; +#X obj 35 688 rifft~; +#X obj 35 737 outlet~; +#X obj 277 147 *~; +#X obj 277 198 rsqrt~; +#X obj 105 421 -~; +#X obj 34 663 *~; +#X obj 68 58 tabreceive~ \$0-hann; +#X obj 644 51 loadbang; +#X obj 644 133 r window-size; +#X obj 69 711 tabreceive~ \$0-hann; +#X obj 131 327 *~; +#X msg 644 155 set \$1 4; +#X obj 644 179 block~; +#X msg 643 75 \; pd dsp 1 \; window-size 1024; +#X obj 125 616 /~ 1000; +#X obj 197 616 r window-size; +#X obj 254 229 *~; +#X obj 113 220 *~; +#X obj 277 171 +~ 1e-20; +#X obj 152 246 lrshift~ 1; +#X obj 313 254 lrshift~ 1; +#X obj 152 272 lrshift~ -1; +#X obj 314 281 lrshift~ -1; +#X obj 292 335 *~; +#X obj 105 475 clip~ 0 1; +#X obj 106 448 *~ 1e+20; +#X obj 105 392 +~; +#X obj 105 508 *~; +#X obj 144 508 lrshift~ 1; +#X obj 251 508 lrshift~ -1; +#X obj 125 540 *~; +#X obj 410 411 -~; +#X obj 410 459 clip~ 0 1; +#X obj 411 435 *~ 1e+20; +#X obj 410 488 *~; +#X obj 449 488 lrshift~ 1; +#X obj 553 487 lrshift~ -1; +#X obj 430 517 *~; +#X obj 430 540 *~ -1; +#X obj 430 563 +~ 1; +#X obj 125 582 +~; +#X obj 255 335 *~; +#X obj 98 327 *~; +#X text 195 476 0 if clean; +#X text 170 541 0 if a neighbor is clean; +#X obj 97 301 +~; +#X obj 130 300 +~; +#X obj 255 309 +~; +#X obj 292 308 +~; +#X text 169 558 1 if all neighbors dirty; +#X text 470 584 1 if a neighbor dirty; +#X text 472 568 0 if all neighbors clean; +#X obj 224 679 lrshift~ -1; +#X obj 224 655 sig~ 1; +#X obj 125 638 *~; +#X obj 220 442 expr $f1*$f1/1250; +#X obj 432 385 expr $f1*$f1/1250; +#X obj 220 417 r dirty; +#X obj 432 360 r clean; +#X text 362 148 normalize the amplitudes; +#X text 439 253 add neighboring amplitude to this one; +#X text 437 269 and take squared magnitude of result -; +#X text 437 286 do this for both the left neightbor and; +#X text 436 303 the right one; +#X text 94 82 forward real Hann-windowed FT; +#X text 284 658 I had trouble with the DC bin - this zeros it.; +#X text 594 366 adjust threshold to quadratic; +#X text 594 382 units and scale; +#X text 142 389 total incoherence; +#X text 496 414 compare incoherence with the threshold; +#X text 532 511 multiply by left and right; +#X text 531 529 neighbors \, so 0 if any of; +#X text 531 546 the 3 is "clean".; +#X text 497 429 If greater (dirty) \, the "clip" outputs; +#X text 498 444 1 \, otherwise (if clean) \, zero.; +#X text 161 583 add to let in channels; +#X text 159 597 for either criterion; +#X connect 0 0 6 1; +#X connect 1 0 7 0; +#X connect 2 0 24 0; +#X connect 3 0 5 0; +#X connect 4 0 3 0; +#X connect 5 0 11 0; +#X connect 5 0 8 0; +#X connect 5 0 8 1; +#X connect 5 0 23 0; +#X connect 5 1 0 0; +#X connect 5 1 2 0; +#X connect 5 1 2 1; +#X connect 5 1 22 0; +#X connect 6 0 1 0; +#X connect 8 0 24 0; +#X connect 9 0 23 1; +#X connect 9 0 22 1; +#X connect 10 0 31 0; +#X connect 11 0 6 0; +#X connect 12 0 3 1; +#X connect 13 0 19 0; +#X connect 14 0 17 0; +#X connect 15 0 1 1; +#X connect 16 0 32 0; +#X connect 17 0 18 0; +#X connect 20 0 60 0; +#X connect 21 0 20 1; +#X connect 22 0 26 0; +#X connect 22 0 28 0; +#X connect 22 0 53 0; +#X connect 22 0 54 0; +#X connect 23 0 25 0; +#X connect 23 0 27 0; +#X connect 23 0 51 0; +#X connect 23 0 52 0; +#X connect 24 0 9 0; +#X connect 25 0 51 1; +#X connect 26 0 53 1; +#X connect 27 0 52 1; +#X connect 28 0 54 1; +#X connect 29 0 32 1; +#X connect 30 0 33 0; +#X connect 30 0 35 0; +#X connect 30 0 34 0; +#X connect 31 0 30 0; +#X connect 32 0 10 0; +#X connect 32 0 37 0; +#X connect 33 0 36 0; +#X connect 34 0 33 1; +#X connect 35 0 36 1; +#X connect 36 0 46 0; +#X connect 37 0 39 0; +#X connect 38 0 40 0; +#X connect 38 0 42 0; +#X connect 38 0 41 0; +#X connect 39 0 38 0; +#X connect 40 0 43 0; +#X connect 41 0 40 1; +#X connect 42 0 43 1; +#X connect 43 0 44 0; +#X connect 44 0 45 0; +#X connect 45 0 46 1; +#X connect 46 0 20 0; +#X connect 47 0 32 1; +#X connect 48 0 32 0; +#X connect 51 0 48 0; +#X connect 51 0 48 1; +#X connect 52 0 16 0; +#X connect 52 0 16 1; +#X connect 53 0 47 0; +#X connect 53 0 47 1; +#X connect 54 0 29 0; +#X connect 54 0 29 1; +#X connect 58 0 60 1; +#X connect 59 0 58 0; +#X connect 60 0 11 1; +#X connect 60 0 0 1; +#X connect 61 0 10 1; +#X connect 62 0 37 1; +#X connect 63 0 61 0; +#X connect 64 0 62 0; +#X restore 49 410 pd fft-analysis; +#X floatatom 355 287 0 0 100 0 - - -; +#X text 138 10 PITCHED/UNPITCHED SEPARATION; +#X obj 48 443 output~; +#X floatatom 48 356 0 0 100 0 - - -; +#X text 105 337 noise; +#X floatatom 108 356 0 0 100 0 - - -; +#N canvas 214 193 769 642 test-signal 0; +#X obj 75 328 line~; +#X obj 75 250 f; +#X obj 517 236 *~; +#X obj 76 442 *~; +#X obj 517 127 noise~; +#X obj 371 494 +~; +#X obj 98 415 dbtorms; +#X obj 539 210 dbtorms; +#X obj 98 390 inlet; +#X obj 539 186 inlet; +#X obj 373 568 outlet~; +#X msg 75 304 0 \, \$1 \$2; +#X obj 75 276 pack 0 0; +#X obj 236 248 /; +#X obj 251 190 * 0.001; +#X obj 251 219 t b f; +#X obj 372 543 hip~ 5; +#X obj 75 136 loadbang; +#X obj 75 182 metro 1000; +#X obj 517 152 bp~ 10000 3; +#X obj 75 161 tgl 15 0 empty empty empty 0 -6 0 8 -262144 -1 -1 1 1 +; +#X text 270 247 sample duration \, msec; +#X text 126 84 looped sample playback; +#X obj 75 356 tabread4~ \$0-sample; +#X text 514 100 filtered noise; +#X text 105 15 TEST SIGNAL: looped sample plus noise. The inlets control +amplitude of each in dB.; +#X obj 236 139 r \$0-samplength; +#X obj 251 164 r \$0-insamprate; +#X obj 658 244 *~; +#X obj 680 218 dbtorms; +#X obj 680 194 inlet; +#X text 655 108 osc; +#X obj 658 134 osc~ 440; +#X obj 372 519 *~ 3; +#X connect 0 0 23 0; +#X connect 1 0 12 0; +#X connect 2 0 5 1; +#X connect 3 0 5 0; +#X connect 4 0 19 0; +#X connect 5 0 33 0; +#X connect 6 0 3 1; +#X connect 7 0 2 1; +#X connect 8 0 6 0; +#X connect 9 0 7 0; +#X connect 11 0 0 0; +#X connect 12 0 11 0; +#X connect 13 0 12 1; +#X connect 13 0 18 1; +#X connect 14 0 15 0; +#X connect 15 0 13 0; +#X connect 15 1 13 1; +#X connect 16 0 10 0; +#X connect 17 0 20 0; +#X connect 18 0 1 0; +#X connect 19 0 2 0; +#X connect 20 0 18 0; +#X connect 23 0 3 0; +#X connect 26 0 1 1; +#X connect 26 0 13 0; +#X connect 27 0 14 0; +#X connect 28 0 5 1; +#X connect 29 0 28 1; +#X connect 30 0 29 0; +#X connect 32 0 28 0; +#X connect 33 0 16 0; +#X restore 48 380 pd test-signal; +#X text 32 334 sampler; +#X text 56 314 amplitudes (dB); +#N canvas 0 110 565 454 hann-window 0; +#N canvas 0 0 450 300 graph1 0; +#X array \$0-hann 1024 float 0; +#X coords 0 1 1023 0 300 100 1; +#X restore 82 311 graph; +#X obj 378 165 osc~; +#X obj 378 190 *~ -0.5; +#X obj 378 214 +~ 0.5; +#X obj 331 247 tabwrite~ \$0-hann; +#X obj 37 88 r window-size; +#X obj 38 173 /; +#X obj 127 142 samplerate~; +#X obj 38 251 s window-sec; +#X obj 177 204 swap; +#X obj 177 228 /; +#X obj 177 252 s window-hz; +#X obj 49 201 * 1000; +#X obj 49 228 s window-msec; +#X obj 38 115 t f b f; +#X msg 173 92 resize \$1; +#X obj 173 116 s \$0-hann; +#X obj 330 105 r window-hz; +#X msg 382 130 0; +#X obj 330 131 t f b; +#X text 15 8 calculate Hann window table (variable window size) and +constants window-hz (fundamental frequency of analysis) \, window-sec +and window-msec (analysis window size in seconds and msec).; +#X connect 1 0 2 0; +#X connect 2 0 3 0; +#X connect 3 0 4 0; +#X connect 5 0 14 0; +#X connect 6 0 8 0; +#X connect 6 0 12 0; +#X connect 7 0 6 1; +#X connect 7 0 9 1; +#X connect 9 0 10 0; +#X connect 9 1 10 1; +#X connect 10 0 11 0; +#X connect 12 0 13 0; +#X connect 14 0 6 0; +#X connect 14 0 9 0; +#X connect 14 1 7 0; +#X connect 14 2 15 0; +#X connect 15 0 16 0; +#X connect 17 0 19 0; +#X connect 18 0 1 1; +#X connect 19 0 1 0; +#X connect 19 1 4 0; +#X connect 19 1 18 0; +#X restore 457 458 pd hann-window; +#N canvas 52 71 774 520 tables 0; +#N canvas 0 0 450 300 graph1 0; +#X array \$0-last-real 2048 float 0; +#X coords 0 500 2048 -500 200 150 1; +#X restore 103 15 graph; +#N canvas 0 0 450 300 graph2 0; +#X array \$0-last-imag 2048 float 0; +#X coords 0 500 2048 500 200 150 1; +#X restore 497 6 graph; +#N canvas 0 0 450 300 graph1 0; +#X array \$0-precess-real 2048 float 0; +#X coords 0 500 2048 -500 200 150 1; +#X restore 105 185 graph; +#N canvas 0 0 450 300 graph2 0; +#X array \$0-precess-imag 2048 float 0; +#X coords 0 500 2048 -500 200 150 1; +#X restore 501 178 graph; +#N canvas 0 0 450 300 graph1 0; +#X array \$0-inc-real 2048 float 0; +#X coords 0 1 2048 -1 200 150 1; +#X restore 105 357 graph; +#N canvas 0 0 450 300 graph2 0; +#X array \$0-inc-imag 2048 float 0; +#X coords 0 1 2048 -1 200 150 1; +#X restore 503 342 graph; +#X restore 457 479 pd tables; +#N canvas 388 86 722 350 insample 0; +#N canvas 0 0 450 300 graph1 0; +#X array \$0-sample 62079 float 0; +#X coords 0 1 62078 -1 400 150 1; +#X restore 259 24 graph; +#X obj 19 23 r read-sample; +#X obj 19 74 unpack s f; +#X obj 19 184 soundfiler; +#X text 356 250 read a sample; +#X obj 276 249 loadbang; +#X obj 19 100 t s b; +#X obj 75 99 symbol \$0-sample; +#X obj 19 135 pack s s; +#X msg 19 160 read -resize \$1 \$2; +#X obj 74 46 44100; +#X obj 19 47 t a b; +#X msg 276 273 \; read-sample ../sound/bell.aiff; +#X obj 29 208 s \$0-samplength; +#X obj 116 74 s \$0-insamprate; +#X obj 19 247 /; +#X obj 19 271 * 1000; +#X obj 19 294 s \$0-samp-msec; +#X obj 57 247 r \$0-insamprate; +#X connect 1 0 11 0; +#X connect 2 0 6 0; +#X connect 2 1 14 0; +#X connect 3 0 13 0; +#X connect 3 0 15 0; +#X connect 5 0 12 0; +#X connect 6 0 8 0; +#X connect 6 1 7 0; +#X connect 7 0 8 1; +#X connect 8 0 9 0; +#X connect 9 0 3 0; +#X connect 10 0 14 0; +#X connect 11 0 2 0; +#X connect 11 1 10 0; +#X connect 15 0 16 0; +#X connect 16 0 17 0; +#X connect 18 0 15 1; +#X restore 233 501 pd insample; +#X msg 233 403 ../sound/bell.aiff; +#X msg 233 426 ../sound/voice.wav; +#X msg 233 449 ../sound/voice2.wav; +#X text 236 383 change input sound; +#X obj 233 473 s read-sample; +#X floatatom 233 523 5 0 0 0 - #0-samp-msec -; +#X text 286 522 sample length \, msec; +#X floatatom 233 285 0 0 100 0 - - -; +#X floatatom 169 356 0 0 100 0 - - -; +#X text 167 336 osc; +#X msg 471 325 512; +#X msg 471 346 1024; +#X msg 471 368 2048; +#X obj 471 413 s window-size; +#X msg 471 390 4096; +#X obj 233 308 s clean; +#X text 233 331 0=silent; +#X text 231 351 100=all; +#X obj 355 310 s dirty; +#X text 351 331 100=silent; +#X text 353 348 0=all; +#X text 354 563 updated for Pd version 0.39; +#X text 11 212 Two separate thresholds may be adjusted to listen to +the "clean" or "dirty" part of the signal. You'll hear anything less +incoherent than the clean threshold \, OR more incoherent than the +dirty one.; +#X text 13 35 This patch applies a very simple coherence test to distinguish +between sinusoids and noise in an input signal. It works very imperfectly +(since noise is random \, no matter what test we place on it it will +sometimes spoof its way in.) Here we just test that neighboring channels +are 180 degrees (pi radians) out of phase \, as they should be in the +main lobe in response to a sinusoid. If any three channels are so arranged +\, all three are considered as contributing to a sinusoid. To do this +we make an "incoherence" measure which is zero if the phase relationship +is perfect and progressively larger otherwise.; +#X connect 0 0 3 0; +#X connect 0 0 3 1; +#X connect 1 0 31 0; +#X connect 4 0 7 0; +#X connect 6 0 7 1; +#X connect 7 0 0 0; +#X connect 13 0 17 0; +#X connect 14 0 17 0; +#X connect 15 0 17 0; +#X connect 20 0 28 0; +#X connect 21 0 7 2; +#X connect 23 0 26 0; +#X connect 24 0 26 0; +#X connect 25 0 26 0; +#X connect 27 0 26 0; diff --git a/pd/doc/3.audio.examples/I10.phase.bash.pd b/pd/doc/3.audio.examples/I10.phase.bash.pd new file mode 100644 index 00000000..4c66f9b7 --- /dev/null +++ b/pd/doc/3.audio.examples/I10.phase.bash.pd @@ -0,0 +1,569 @@ +#N canvas 165 311 718 552 12; +#X floatatom 407 323 0 0 0 0 - - -; +#N canvas 122 165 801 538 fft 0; +#X obj 39 153 *~; +#X obj 7 153 *~; +#X obj 7 98 *~; +#X obj 7 70 inlet~; +#X obj 7 125 rfft~; +#X obj 7 227 *~; +#X obj 7 306 rifft~; +#X obj 43 99 tabreceive~ \$0-hann; +#X obj 7 200 q8_sqrt~; +#X obj 337 158 samplerate~; +#X obj 328 124 bang~; +#X obj 337 183 t f b; +#X obj 444 4 loadbang; +#X obj 636 19 r window-size; +#X obj 636 65 block~; +#X obj 337 207 osc~; +#X msg 381 207 0; +#X obj 8 333 *~; +#X obj 44 334 tabreceive~ \$0-hann; +#X obj 9 363 outlet~; +#X obj 77 281 r window-size; +#X obj 7 281 /~ 1000; +#X msg 636 41 set \$1 2; +#X obj 387 267 r \$0-start; +#X obj 328 320 spigot; +#X msg 387 292 1; +#X msg 354 292 0; +#X obj 328 516 outlet; +#X obj 364 372 r window-size; +#X obj 364 441 t f b; +#X obj 396 464 samplerate~; +#X obj 364 464 /; +#X obj 364 487 * 1000; +#X obj 328 493 del; +#X obj 364 395 / 2; +#X obj 364 418 - 1; +#X msg 443 28 \; pd dsp 1 \; window-size 1024 \; pitch 48 \; specshift +0; +#X text 96 196 magnitude of FT; +#X text 18 249 align partials to middle of window; +#X text 39 232 alternate every other sign to; +#X text 383 122 control computations to do every frame; +#X text 414 180 set sample rate of the oscillator to; +#X text 416 195 Nyquist (here we're operating at twice; +#X text 418 211 the global "samplerate~" because of; +#X text 417 228 the overlap-2 blocking.) Also set phase; +#X text 417 244 to zero at beginning of frame.; +#X text 424 287 When analysis starts \, set a delay to; +#X text 425 304 one frame minus a sample (i.e. \, just; +#X text 424 321 one 64-sample block before the next; +#X text 423 338 frame) which is synchronized with the; +#X text 423 352 first frame emerging from outlet~ at; +#X text 499 368 left. In the parent window; +#X text 497 385 this is used to start; +#X text 497 402 recording synchronously.; +#X text 14 384 output phase-aligned frames; +#X text 395 514 output a bang to start recording; +#X connect 0 0 8 0; +#X connect 1 0 8 0; +#X connect 2 0 4 0; +#X connect 3 0 2 0; +#X connect 4 0 1 0; +#X connect 4 0 1 1; +#X connect 4 1 0 0; +#X connect 4 1 0 1; +#X connect 5 0 21 0; +#X connect 6 0 17 0; +#X connect 7 0 2 1; +#X connect 8 0 5 0; +#X connect 9 0 11 0; +#X connect 10 0 9 0; +#X connect 10 0 24 0; +#X connect 11 0 15 0; +#X connect 11 1 16 0; +#X connect 12 0 36 0; +#X connect 13 0 22 0; +#X connect 15 0 5 1; +#X connect 16 0 15 1; +#X connect 17 0 19 0; +#X connect 18 0 17 1; +#X connect 20 0 21 1; +#X connect 21 0 6 0; +#X connect 22 0 14 0; +#X connect 23 0 25 0; +#X connect 24 0 26 0; +#X connect 24 0 33 0; +#X connect 25 0 24 1; +#X connect 26 0 24 1; +#X connect 28 0 34 0; +#X connect 29 0 31 0; +#X connect 29 1 30 0; +#X connect 30 0 31 1; +#X connect 31 0 32 0; +#X connect 32 0 33 1; +#X connect 33 0 27 0; +#X connect 34 0 35 0; +#X connect 35 0 29 0; +#X restore 22 459 pd fft; +#X floatatom 586 377 0 0 120 0 - pitch-set -; +#X floatatom 583 330 0 0 0 0 - specshift-set -; +#X obj 583 353 s specshift; +#X obj 407 443 s loco; +#X obj 586 400 s pitch; +#X obj 407 346 pack 0 100; +#X obj 588 453 output~; +#X text 214 -1 PHASE BASHING; +#X text 455 515 updated for Pd version 0.39; +#X floatatom 199 389 5 0 0 0 - #0-samp-msec -; +#X text 197 403 sample length \, msec; +#X msg 198 288 ../sound/bell.aiff; +#X msg 198 313 ../sound/voice.wav; +#X msg 198 338 ../sound/voice2.wav; +#X text 201 266 change input sound; +#X obj 198 364 s read-sample; +#N canvas 190 43 657 626 test-signal 0; +#X obj 88 381 line~; +#X obj 88 306 f; +#X obj 88 536 outlet~; +#X msg 88 360 0 \, \$1 \$2; +#X obj 88 334 pack 0 0; +#X obj 190 303 /; +#X obj 269 283 * 0.001; +#X obj 211 260 t b b f; +#X obj 152 225 t b f; +#X obj 88 406 tabread4~ \$0-sample; +#X obj 286 391 adc~ 1; +#X obj 414 280 inlet; +#X obj 454 339 samplerate~; +#X obj 151 201 r \$0-samplength; +#X obj 211 234 r \$0-insamprate; +#X obj 87 189 inlet; +#X obj 454 363 s \$0-insamprate; +#X obj 285 423 *~; +#X obj 363 380 del; +#X obj 414 312 t b b; +#X msg 402 379 1; +#X msg 401 404 0; +#X obj 87 473 hip~ 5; +#X obj 88 444 +~; +#X text 73 123 play sample; +#X text 71 143 once; +#X obj 482 420 s \$0-start; +#X connect 0 0 9 0; +#X connect 1 0 4 0; +#X connect 3 0 0 0; +#X connect 4 0 3 0; +#X connect 5 0 4 1; +#X connect 5 0 18 1; +#X connect 6 0 5 1; +#X connect 7 1 5 0; +#X connect 7 2 6 0; +#X connect 8 1 5 0; +#X connect 8 1 1 1; +#X connect 9 0 23 0; +#X connect 10 0 17 0; +#X connect 11 0 19 0; +#X connect 12 0 16 0; +#X connect 13 0 8 0; +#X connect 14 0 7 0; +#X connect 15 0 1 0; +#X connect 15 0 26 0; +#X connect 17 0 23 1; +#X connect 18 0 21 0; +#X connect 19 0 20 0; +#X connect 19 0 18 0; +#X connect 19 0 26 0; +#X connect 19 1 12 0; +#X connect 20 0 17 1; +#X connect 21 0 17 1; +#X connect 22 0 2 0; +#X connect 23 0 22 0; +#X restore 22 436 pd test-signal; +#X obj 143 417 bng 15 250 50 0 empty empty empty 0 -6 0 8 -262144 -1 +-1; +#N canvas 0 110 565 454 hann-window 0; +#N canvas 0 0 450 300 graph1 0; +#X array \$0-hann 2048 float 0; +#X coords 0 1 2047 0 300 100 1; +#X restore 82 311 graph; +#X obj 378 165 osc~; +#X obj 378 190 *~ -0.5; +#X obj 378 214 +~ 0.5; +#X obj 331 247 tabwrite~ \$0-hann; +#X obj 37 88 r window-size; +#X obj 38 173 /; +#X obj 127 142 samplerate~; +#X obj 38 251 s window-sec; +#X obj 177 204 swap; +#X obj 177 228 /; +#X obj 177 252 s window-hz; +#X obj 49 201 * 1000; +#X obj 49 228 s window-msec; +#X obj 38 115 t f b f; +#X msg 173 92 resize \$1; +#X obj 173 116 s \$0-hann; +#X obj 330 105 r window-hz; +#X msg 382 130 0; +#X obj 330 131 t f b; +#X text 15 8 calculate Hann window table (variable window size) and +constants window-hz (fundamental frequency of analysis) \, window-sec +and window-msec (analysis window size in seconds and msec).; +#X connect 1 0 2 0; +#X connect 2 0 3 0; +#X connect 3 0 4 0; +#X connect 5 0 14 0; +#X connect 6 0 8 0; +#X connect 6 0 12 0; +#X connect 7 0 6 1; +#X connect 7 0 9 1; +#X connect 9 0 10 0; +#X connect 9 1 10 1; +#X connect 10 0 11 0; +#X connect 12 0 13 0; +#X connect 14 0 6 0; +#X connect 14 0 9 0; +#X connect 14 1 7 0; +#X connect 14 2 15 0; +#X connect 15 0 16 0; +#X connect 17 0 19 0; +#X connect 18 0 1 1; +#X connect 19 0 1 0; +#X connect 19 1 4 0; +#X connect 19 1 18 0; +#X restore 195 441 pd hann-window; +#X msg 28 269 512; +#X msg 28 290 1024; +#X msg 28 312 2048; +#X obj 28 357 s window-size; +#X msg 28 334 4096; +#N canvas 388 86 736 499 insample 0; +#N canvas 0 0 450 300 graph1 0; +#X array \$0-sample 62079 float 0; +#X coords 0 1 62078 -1 400 150 1; +#X restore 259 24 graph; +#X obj 19 23 r read-sample; +#X obj 19 74 unpack s f; +#X obj 19 184 soundfiler; +#X text 118 379 read a sample; +#X obj 38 378 loadbang; +#X obj 19 100 t s b; +#X obj 75 99 symbol \$0-sample; +#X obj 19 135 pack s s; +#X msg 19 160 read -resize \$1 \$2; +#X obj 74 46 44100; +#X obj 19 47 t a b; +#X obj 29 208 s \$0-samplength; +#X obj 116 74 s \$0-insamprate; +#X obj 19 281 /; +#X obj 19 305 * 1000; +#X obj 19 328 s \$0-samp-msec; +#X obj 57 281 r \$0-insamprate; +#X msg 38 402 \; read-sample ../sound/voice.wav; +#N canvas 0 0 450 300 graph1 0; +#X array \$0-nophase 62079 float 0; +#X coords 0 1 62078 -1 400 150 1; +#X restore 256 185 graph; +#X msg 376 403 resize \$1; +#X obj 376 379 r \$0-samplength; +#X obj 376 428 s \$0-nophase; +#X connect 1 0 11 0; +#X connect 2 0 6 0; +#X connect 2 1 13 0; +#X connect 3 0 12 0; +#X connect 3 0 14 0; +#X connect 5 0 18 0; +#X connect 6 0 8 0; +#X connect 6 1 7 0; +#X connect 7 0 8 1; +#X connect 8 0 9 0; +#X connect 9 0 3 0; +#X connect 10 0 13 0; +#X connect 11 0 2 0; +#X connect 11 1 10 0; +#X connect 14 0 15 0; +#X connect 15 0 16 0; +#X connect 17 0 14 1; +#X connect 20 0 22 0; +#X connect 21 0 20 0; +#X restore 195 464 pd insample; +#X obj 22 416 bng 15 250 50 0 empty empty empty 0 -6 0 8 -262144 -1 +-1; +#X text 33 384 ---analyze---; +#X text 20 399 sample; +#X obj 94 489 tabwrite~ \$0-nophase; +#X obj 21 492 output~; +#X msg 415 384 0 \, 400 4000; +#X msg 415 419 0 \, 400 10000; +#X text 47 18 This patch takes an incoming sound \, does an overlap-2 +FFT analysis of it \, and bashes the phases of the spectra so that +when regenerated the components will all have zero phase at the middle +of each window. You can use the windows as waveforms and cross-fade +them at will without getting phase modulation. This might be useful +for making synthetic instruments that mimic the spectral variation +of recorded sounds.; +#X text 398 305 (hundredths of sec); +#X text 401 289 location in sample; +#X text 420 365 normal speed; +#X text 422 403 slow; +#X text 458 262 ------ playback -------; +#N canvas 81 424 887 624 playback 0; +#X obj 101 479 r invblk; +#X obj 28 499 *~; +#X obj 61 501 clip~ 1 1000; +#X floatatom 38 89 0 0 0 0 - - -; +#X floatatom 510 93 0 0 0 0 - - -; +#X obj 496 392 *~; +#X obj 626 369 samphold~; +#X obj 733 369 samphold~; +#X obj 538 369 samphold~; +#X obj 481 500 clip~ -0.5 0.5; +#X obj 481 523 cos~; +#X obj 651 427 +~; +#X obj 653 506 -~; +#X obj 642 533 *~; +#X obj 642 558 +~; +#X obj 621 582 *~; +#X obj 40 408 *~; +#X obj 197 362 samphold~; +#X obj 302 367 samphold~; +#X obj 508 290 phasor~; +#X obj 174 288 wrap~; +#X obj 510 68 r pitch; +#X obj 510 140 mtof; +#X obj 269 199 line~; +#X obj 268 224 -~; +#X text 8 42 spectral stretch; +#X obj 89 367 samphold~; +#X obj 665 187 t b f; +#X obj 699 210 /; +#X obj 665 209 1; +#X obj 29 524 clip~ -0.5 0.5; +#X obj 29 546 cos~; +#X obj 211 425 +~; +#X obj 212 505 -~; +#X obj 194 526 *~; +#X obj 201 549 +~; +#X text 45 426 offset into; +#X text 50 440 sample; +#X text 368 169 samples; +#X text 368 154 period in; +#X text 204 378 weight for; +#X text 204 393 next block; +#X obj 760 312 wrap~; +#X obj 700 232 s invblk; +#X obj 558 453 r invblk; +#X obj 665 138 r window-size; +#X obj 38 65 r specshift; +#X obj 261 64 r loco; +#X obj 482 473 *~; +#X obj 518 474 clip~ 1 1000; +#X obj 510 117 - 12; +#X obj 38 136 + 69; +#X obj 38 159 mtof; +#X obj 38 182 / 440; +#X obj 28 284 *~ 1; +#X obj 760 287 +~ 0.5; +#X obj 60 479 *~ 1; +#X obj 518 453 *~ 1; +#X obj 481 545 +~ 1; +#X obj 29 569 +~ 1; +#X obj 267 292 *~ 1; +#X obj 212 453 +~ 0; +#X obj 652 456 +~ 0; +#X obj 28 366 -~ 0.5; +#X obj 479 369 -~ 0.5; +#X obj 286 603 outlet~; +#X obj 212 479 tabread4~ \$0-nophase; +#X obj 249 504 tabread4~ \$0-nophase; +#X obj 652 480 tabread4~ \$0-nophase; +#X obj 688 505 tabread4~ \$0-nophase; +#X obj 268 247 +~ 0.5; +#X text 60 248 grain size; +#X text 62 264 in samples; +#X text 97 383 grain size; +#X text 311 389 middle; +#X text 311 404 of block; +#X text 165 248 fractional; +#X text 164 265 part of loc; +#X text 295 224 integer part of loc; +#X text 328 247 middle of block; +#X text 310 290 cvt to samples; +#X text 522 265 run two copies 180 degrees out of phase; +#X text 29 589 window shaped; +#X text 27 604 by raised cos; +#X text 265 522 weighted sum of; +#X text 265 538 2 windows; +#X obj 180 573 *~; +#X obj 286 577 +~; +#X obj 704 163 s blksize; +#X obj 683 429 r blksize; +#X obj 243 427 r blksize; +#X obj 297 270 r blksize; +#X obj 665 162 / 2; +#X obj 366 132 /; +#X obj 366 105 samplerate~; +#X obj 365 82 t b f; +#X obj 38 112 * 0.125; +#X text 223 44 read location in sec/100; +#X obj 200 120 samplerate~; +#X obj 167 72 / 100; +#X obj 167 96 t f b; +#X obj 167 119 *; +#X obj 200 144 r blksize; +#X obj 167 144 /; +#X text 113 162 read location \, blocks; +#X obj 260 89 unpack; +#X msg 630 52 set \$1; +#X obj 771 32 r pitch; +#X msg 771 55 set \$1; +#X obj 630 30 r specshift; +#X text 723 190 1/(block size); +#X obj 630 76 s specshift-set; +#X obj 770 78 s pitch-set; +#X text 607 104 analysis overlap was 2 so our; +#X text 606 120 block size is (window size)/2; +#X text 12 -1 OVERLAPPED \, WINDOWED SAMPLE PLAYBACK; +#X text 357 0 - with controls for pitch \, location \, and spectral +shift; +#X connect 0 0 56 1; +#X connect 1 0 30 0; +#X connect 2 0 1 1; +#X connect 3 0 96 0; +#X connect 4 0 50 0; +#X connect 5 0 11 0; +#X connect 6 0 13 0; +#X connect 7 0 11 1; +#X connect 8 0 5 1; +#X connect 8 0 57 0; +#X connect 9 0 10 0; +#X connect 10 0 58 0; +#X connect 11 0 62 0; +#X connect 11 0 69 0; +#X connect 12 0 13 1; +#X connect 13 0 14 0; +#X connect 14 0 15 1; +#X connect 15 0 87 1; +#X connect 16 0 32 0; +#X connect 17 0 34 0; +#X connect 18 0 32 1; +#X connect 19 0 26 1; +#X connect 19 0 18 1; +#X connect 19 0 17 1; +#X connect 19 0 55 0; +#X connect 19 0 63 0; +#X connect 20 0 24 1; +#X connect 20 0 17 0; +#X connect 20 0 6 0; +#X connect 21 0 4 0; +#X connect 22 0 19 0; +#X connect 22 0 95 0; +#X connect 23 0 20 0; +#X connect 23 0 24 0; +#X connect 24 0 70 0; +#X connect 26 0 16 1; +#X connect 26 0 56 0; +#X connect 27 0 29 0; +#X connect 27 1 28 1; +#X connect 28 0 43 0; +#X connect 29 0 28 0; +#X connect 30 0 31 0; +#X connect 31 0 59 0; +#X connect 32 0 61 0; +#X connect 32 0 67 0; +#X connect 33 0 34 1; +#X connect 34 0 35 0; +#X connect 35 0 86 1; +#X connect 42 0 8 1; +#X connect 42 0 6 1; +#X connect 42 0 7 1; +#X connect 42 0 64 0; +#X connect 44 0 57 1; +#X connect 45 0 92 0; +#X connect 46 0 3 0; +#X connect 47 0 105 0; +#X connect 48 0 9 0; +#X connect 49 0 48 1; +#X connect 50 0 22 0; +#X connect 51 0 52 0; +#X connect 52 0 53 0; +#X connect 53 0 54 1; +#X connect 54 0 26 0; +#X connect 54 0 8 0; +#X connect 55 0 42 0; +#X connect 56 0 2 0; +#X connect 57 0 49 0; +#X connect 58 0 15 0; +#X connect 59 0 86 0; +#X connect 60 0 18 0; +#X connect 60 0 7 0; +#X connect 61 0 66 0; +#X connect 62 0 68 0; +#X connect 63 0 16 0; +#X connect 63 0 1 0; +#X connect 64 0 5 0; +#X connect 64 0 48 0; +#X connect 66 0 33 0; +#X connect 67 0 33 1; +#X connect 67 0 35 1; +#X connect 68 0 12 0; +#X connect 69 0 12 1; +#X connect 69 0 14 1; +#X connect 70 0 60 0; +#X connect 86 0 87 0; +#X connect 87 0 65 0; +#X connect 89 0 62 1; +#X connect 90 0 61 1; +#X connect 91 0 60 1; +#X connect 92 0 88 0; +#X connect 92 0 27 0; +#X connect 93 0 54 0; +#X connect 94 0 93 0; +#X connect 95 0 94 0; +#X connect 95 1 93 1; +#X connect 96 0 51 0; +#X connect 98 0 101 1; +#X connect 99 0 100 0; +#X connect 100 0 101 0; +#X connect 100 1 98 0; +#X connect 101 0 103 0; +#X connect 102 0 103 1; +#X connect 103 0 23 0; +#X connect 105 0 99 0; +#X connect 105 1 23 1; +#X connect 106 0 111 0; +#X connect 107 0 108 0; +#X connect 108 0 112 0; +#X connect 109 0 106 0; +#X restore 589 428 pd playback; +#X text 585 290 spectral shift; +#X text 583 306 (hundredths of; +#X text 646 323 octave); +#X text 126 398 live; +#X text 45 141 You can save the analyses and needn't be running the +FFT patch to do the resynthesis. You can read a sample \, select window +size \, and press "sample" to analyze it \, or else analyze a "live" +input. You'll hear the phase-bashed sample as the analysis runs. You +can regenerate the sound with specified pitch \, sample location \, +and spectral shift \, using the "playback" controls.; +#X text 83 278 analysis; +#X text 80 264 (redo; +#X text 83 294 after; +#X text 84 309 changing; +#X text 84 325 window; +#X text 85 339 size); +#X connect 0 0 7 0; +#X connect 1 0 30 0; +#X connect 1 0 31 0; +#X connect 1 0 31 1; +#X connect 1 1 30 0; +#X connect 2 0 6 0; +#X connect 3 0 4 0; +#X connect 7 0 5 0; +#X connect 13 0 17 0; +#X connect 14 0 17 0; +#X connect 15 0 17 0; +#X connect 18 0 1 0; +#X connect 19 0 18 1; +#X connect 21 0 24 0; +#X connect 22 0 24 0; +#X connect 23 0 24 0; +#X connect 25 0 24 0; +#X connect 27 0 18 0; +#X connect 32 0 5 0; +#X connect 33 0 5 0; +#X connect 40 0 8 0; +#X connect 40 0 8 1; diff --git a/pd/doc/3.audio.examples/J01.even.odd.pd b/pd/doc/3.audio.examples/J01.even.odd.pd new file mode 100644 index 00000000..71c9fdf5 --- /dev/null +++ b/pd/doc/3.audio.examples/J01.even.odd.pd @@ -0,0 +1,66 @@ +#N canvas 213 27 782 599 12; +#X obj 80 156 wrap~; +#N canvas 0 0 450 300 graph1 0; +#X array \$0-phasor 882 float 0; +#X coords 0 1.02 882 -1.02 200 130 1; +#X restore 567 35 graph; +#X obj 24 57 -~ 0.5; +#X obj 80 184 -~ 0.5; +#N canvas 0 0 450 300 graph1 0; +#X array \$0-sum 882 float 0; +#X coords 0 1.02 882 -1.02 200 130 1; +#X restore 567 189 graph; +#N canvas 0 0 450 300 graph1 0; +#X array \$0-difference 882 float 0; +#X coords 0 1.02 882 -1.02 200 130 1; +#X restore 566 343 graph; +#X text 570 475 ---- 0.02 seconds ----; +#X text 528 567 updated for Pd version 0.39; +#X obj 22 335 output~; +#X obj 138 78 bng 15 250 50 0 empty empty empty 0 -6 0 8 -262144 -1 +-1; +#X obj 29 270 output~; +#X text 41 -1 Splitting a sawtooth wave into even and odd harmonics +; +#X obj 24 29 phasor~ 100; +#X text 87 58 remove DC bias; +#X text 132 29 original sawtooth; +#X text 144 173 180-degree-out-of-phase; +#X text 147 188 sawtooth; +#X text 145 212 form the sum and difference; +#X obj 23 224 +~; +#X obj 59 223 -~; +#X text 4 408 This patch splits a sawtooth wave into its even and odd +harmonics. The wrap~ object is used to make the phased copy. Adding +and subtracting this to and from the original gives the results shown +and heard. (Listen to the two outputs separately \, then together.) +; +#X text 102 291 output level; +#X text 93 367 for sum; +#X text 95 350 output level; +#X text 100 308 for difference; +#X text 157 77 <-- click to graph; +#X msg 148 97 \; pd DSP 1; +#X obj 138 247 tabwrite~ \$0-difference; +#X obj 138 270 tabwrite~ \$0-sum; +#X obj 138 138 tabwrite~ \$0-phasor; +#X text 4 491 This is a classic technique for gaining separate control +over the even and odd harmonics in a synthetic sound. It can also be +used conceptually to understand the harmonic content of a square wave +in terms of that of a sawtooth \, or vice versa.; +#X connect 0 0 3 0; +#X connect 2 0 0 0; +#X connect 2 0 18 0; +#X connect 2 0 19 0; +#X connect 2 0 29 0; +#X connect 3 0 18 1; +#X connect 3 0 19 1; +#X connect 9 0 26 0; +#X connect 9 0 27 0; +#X connect 9 0 28 0; +#X connect 9 0 29 0; +#X connect 12 0 2 0; +#X connect 18 0 8 0; +#X connect 18 0 28 0; +#X connect 19 0 10 1; +#X connect 19 0 27 0; diff --git a/pd/doc/3.audio.examples/J02.trapezoids.pd b/pd/doc/3.audio.examples/J02.trapezoids.pd new file mode 100644 index 00000000..1e7e5d27 --- /dev/null +++ b/pd/doc/3.audio.examples/J02.trapezoids.pd @@ -0,0 +1,84 @@ +#N canvas 262 74 690 585 12; +#X obj 137 133 wrap~; +#X obj 137 155 -~ 0.5; +#N canvas 0 0 450 300 graph1 0; +#X array \$0-sum 882 float 0; +#X coords 0 1.02 881 -1.02 200 130 1; +#X restore 421 155 graph; +#X text 420 293 ---- 0.02 seconds ----; +#X text 427 550 updated for Pd version 0.39; +#X obj 53 335 output~; +#X obj 147 369 tabwrite~ \$0-sum; +#X obj 137 111 -~; +#X obj 159 70 / 100; +#X floatatom 159 49 4 -100 100 0 - - -; +#X obj 158 220 / 100; +#X floatatom 158 199 4 -100 100 0 - - -; +#X obj 136 242 *~; +#X obj 209 134 wrap~; +#X obj 209 156 -~ 0.5; +#X obj 209 112 -~; +#X obj 231 71 / 100; +#X floatatom 231 50 4 -100 100 0 - - -; +#X obj 230 221 / 100; +#X floatatom 230 200 4 -100 100 0 - - -; +#X obj 208 243 *~; +#X obj 280 135 wrap~; +#X obj 280 157 -~ 0.5; +#X obj 280 113 -~; +#X obj 302 72 / 100; +#X floatatom 302 51 4 -100 100 0 - - -; +#X obj 301 222 / 100; +#X floatatom 301 201 4 -100 100 0 - - -; +#X obj 279 244 *~; +#X text 138 30 -- PHASES (percent) --; +#X text 164 180 AMPLITUDES (percent); +#X obj 111 268 +~; +#X obj 112 294 +~; +#X text 31 3 Making trapezoidal waves from sawtooth waves; +#X obj 158 321 tgl 15 0 empty empty empty 0 -6 0 8 -262144 -1 -1 1 +1; +#X obj 25 77 phasor~ 88.2; +#X obj 158 343 metro 193; +#X text 4 476 If the amplitudes sum to zero (with negative ones to +balance positive ones) \, the slope of each linear segment becomes +zero. Otherrwise \, the segments have just enough slope to make up +for the three jumps ane get to the same starting value after each cycle.. +; +#X text 4 408 Here we combine three sawtooth waves with controllable +relative phases and amplitudes (in percent \, between -100 and 100.) +Each sawtooth wave gives rise to one jump (upward or downward) per +cycle.; +#X connect 0 0 1 0; +#X connect 1 0 12 0; +#X connect 7 0 0 0; +#X connect 8 0 7 1; +#X connect 9 0 8 0; +#X connect 10 0 12 1; +#X connect 11 0 10 0; +#X connect 12 0 31 0; +#X connect 13 0 14 0; +#X connect 14 0 20 0; +#X connect 15 0 13 0; +#X connect 16 0 15 1; +#X connect 17 0 16 0; +#X connect 18 0 20 1; +#X connect 19 0 18 0; +#X connect 20 0 31 1; +#X connect 21 0 22 0; +#X connect 22 0 28 0; +#X connect 23 0 21 0; +#X connect 24 0 23 1; +#X connect 25 0 24 0; +#X connect 26 0 28 1; +#X connect 27 0 26 0; +#X connect 28 0 32 1; +#X connect 31 0 32 0; +#X connect 32 0 6 0; +#X connect 32 0 5 0; +#X connect 32 0 5 1; +#X connect 34 0 36 0; +#X connect 35 0 7 0; +#X connect 35 0 15 0; +#X connect 35 0 23 0; +#X connect 36 0 6 0; diff --git a/pd/doc/3.audio.examples/J03.pulse.width.mod.pd b/pd/doc/3.audio.examples/J03.pulse.width.mod.pd new file mode 100644 index 00000000..06301686 --- /dev/null +++ b/pd/doc/3.audio.examples/J03.pulse.width.mod.pd @@ -0,0 +1,48 @@ +#N canvas 46 315 784 514 12; +#X floatatom 95 64 0 0 0 0 - - -; +#N canvas 0 0 450 300 graph1 0; +#X array \$0-difference 882 float 0; +#X coords 0 1.02 882 -1.02 200 130 1; +#X restore 565 325 graph; +#X text 81 39 frequency; +#N canvas 0 0 450 300 graph1 0; +#X array \$0-phasor1 882 float 0; +#X coords 0 1.02 882 -1.02 200 130 1; +#X restore 565 24 graph; +#X text 57 9 CLASSICAL PULSE WIDTH MODULATION; +#X obj 111 156 phasor~ 0; +#X obj 111 132 + 0.2; +#X obj 95 206 -~; +#N canvas 0 0 450 300 graph1 0; +#X array \$0-phasor2 882 float 0; +#X coords 0 1.02 882 -1.02 200 130 1; +#X restore 565 176 graph; +#X text 24 314 This patch demonstrates pulse width modulation \, which +is accomplished simply by subtracting two sawtooth waves at a varying +phase difference. Here their frequencies are set to differ by 1/5 Hz. +so that the relative phase wanders continuously.; +#X text 570 457 ---- 0.02 seconds ----; +#X text 524 487 updated for Pd version 0.39; +#X obj 96 247 output~; +#X obj 200 124 tabwrite~ \$0-phasor1; +#X obj 200 182 tabwrite~ \$0-phasor2; +#X obj 200 236 tabwrite~ \$0-difference; +#X obj 95 97 phasor~; +#X obj 200 82 metro 193; +#X obj 200 62 tgl 15 0 empty empty empty 0 -6 0 8 -262144 -1 -1 1 1 +; +#X text 219 60 <-- start/stop graphing; +#X connect 0 0 6 0; +#X connect 0 0 16 0; +#X connect 5 0 7 1; +#X connect 5 0 14 0; +#X connect 6 0 5 0; +#X connect 7 0 12 0; +#X connect 7 0 12 1; +#X connect 7 0 15 0; +#X connect 16 0 7 0; +#X connect 16 0 13 0; +#X connect 17 0 13 0; +#X connect 17 0 14 0; +#X connect 17 0 15 0; +#X connect 18 0 17 0; diff --git a/pd/doc/3.audio.examples/J04.corners.pd b/pd/doc/3.audio.examples/J04.corners.pd new file mode 100644 index 00000000..72671d3d --- /dev/null +++ b/pd/doc/3.audio.examples/J04.corners.pd @@ -0,0 +1,112 @@ +#N canvas 612 -7 619 714 12; +#X obj 117 132 wrap~; +#X obj 117 154 -~ 0.5; +#N canvas 0 0 450 300 graph1 0; +#X array \$0-sum 882 float 0; +#X coords 0 0.25 881 -0.25 200 130 1; +#X restore 411 70 graph; +#X text 410 208 ---- 0.02 seconds ----; +#X text 354 676 updated for Pd version 0.39; +#X obj 33 427 output~; +#X obj 127 461 tabwrite~ \$0-sum; +#X obj 117 110 -~; +#X obj 139 69 / 100; +#X floatatom 139 48 4 -100 100 0 - - -; +#X obj 138 312 / 100; +#X floatatom 138 291 4 -100 100 0 - - -; +#X obj 116 334 *~; +#X obj 203 133 wrap~; +#X obj 203 155 -~ 0.5; +#X obj 203 111 -~; +#X obj 225 70 / 100; +#X floatatom 225 49 4 -100 100 0 - - -; +#X obj 225 313 / 100; +#X floatatom 225 292 4 -100 100 0 - - -; +#X obj 203 335 *~; +#X obj 290 134 wrap~; +#X obj 290 156 -~ 0.5; +#X obj 290 112 -~; +#X obj 311 71 / 100; +#X floatatom 311 50 4 -100 100 0 - - -; +#X obj 313 314 / 100; +#X floatatom 313 293 4 -100 100 0 - - -; +#X obj 291 336 *~; +#X text 129 26 -- PHASES (percent) --; +#X text 140 267 AMPLITUDES (percent); +#X obj 91 360 +~; +#X obj 92 386 +~; +#X obj 138 413 tgl 15 0 empty empty empty 0 -6 0 8 -262144 -1 -1 1 +1; +#X obj 138 435 metro 193; +#X obj 20 80 phasor~; +#X floatatom 20 59 5 0 0 0 - - -; +#X text 12 36 frequency; +#X obj 116 184 *~; +#X obj 203 184 *~; +#X obj 290 184 *~; +#X obj 116 209 *~ 0.5; +#X obj 116 234 -~ 0.0833; +#X obj 203 209 *~ 0.5; +#X obj 290 209 *~ 0.5; +#X obj 204 234 -~ 0.0833; +#X obj 291 234 -~ 0.0833; +#X text 30 3 Making waveforms with corners using parabolic waves; +#X text 14 499 Here we combine three parabolic waves (in the same way +as \, two patches ago \, we combined sawtooth waves). The parabolic +wave is obtained from the sawtooth wave (assuming it runs from -0.5 +to 0.5) by the formula: y=x*x/2 - 1/12. This is normalized so that +the corner has a slope change of minus one unit per cycle \, and adjusted +to remove any DC component.; +#X text 12 593 In general \, the segments of the result will be curved +\, but if the three magnitudes sum algebraicly to zero \, the segments +will be linear.; +#X text 371 67 0.25; +#X text 362 184 -0.25; +#X text 14 644 Note the reduced scale of the graph (from -0.25 to 0.25) +compared to the previous examples.; +#X connect 0 0 1 0; +#X connect 1 0 38 0; +#X connect 1 0 38 1; +#X connect 7 0 0 0; +#X connect 8 0 7 1; +#X connect 9 0 8 0; +#X connect 10 0 12 1; +#X connect 11 0 10 0; +#X connect 12 0 31 0; +#X connect 13 0 14 0; +#X connect 14 0 39 0; +#X connect 14 0 39 1; +#X connect 15 0 13 0; +#X connect 16 0 15 1; +#X connect 17 0 16 0; +#X connect 18 0 20 1; +#X connect 19 0 18 0; +#X connect 20 0 31 1; +#X connect 21 0 22 0; +#X connect 22 0 40 0; +#X connect 22 0 40 1; +#X connect 23 0 21 0; +#X connect 24 0 23 1; +#X connect 25 0 24 0; +#X connect 26 0 28 1; +#X connect 27 0 26 0; +#X connect 28 0 32 1; +#X connect 31 0 32 0; +#X connect 32 0 6 0; +#X connect 32 0 5 0; +#X connect 32 0 5 1; +#X connect 33 0 34 0; +#X connect 34 0 6 0; +#X connect 35 0 7 0; +#X connect 35 0 15 0; +#X connect 35 0 23 0; +#X connect 36 0 35 0; +#X connect 38 0 41 0; +#X connect 39 0 43 0; +#X connect 40 0 44 0; +#X connect 41 0 42 0; +#X connect 42 0 12 0; +#X connect 43 0 45 0; +#X connect 44 0 46 0; +#X connect 45 0 20 0; +#X connect 46 0 28 0; diff --git a/pd/doc/3.audio.examples/J05.triangle.pd b/pd/doc/3.audio.examples/J05.triangle.pd new file mode 100644 index 00000000..fda0ef05 --- /dev/null +++ b/pd/doc/3.audio.examples/J05.triangle.pd @@ -0,0 +1,56 @@ +#N canvas 111 30 606 531 12; +#N canvas 0 0 450 300 graph1 0; +#X array \$0-sum 882 float 0; +#X coords 0 0.5 881 -0.5 200 130 1; +#X restore 382 119 graph; +#X text 381 257 ---- 0.02 seconds ----; +#X text 350 505 updated for Pd version 0.39; +#X obj 46 242 output~; +#X obj 140 276 tabwrite~ \$0-sum; +#X obj 130 107 / 100; +#X floatatom 130 86 4 0 100 0 - - -; +#X obj 206 108 / 100; +#X floatatom 206 87 4 0 100 0 - - -; +#X obj 151 228 tgl 15 0 empty empty empty 0 -6 0 8 -262144 -1 -1 1 +1; +#X obj 151 250 metro 193; +#X obj 19 95 phasor~; +#X floatatom 19 74 5 0 0 0 - - -; +#X text 11 51 frequency; +#X text 126 50 SLOPES (percent); +#X obj 108 137 *~; +#X obj 19 129 *~ -1; +#X obj 19 154 +~ 1; +#X obj 184 156 *~; +#X obj 108 189 min~; +#X text 341 118 0.5; +#X text 338 237 -0.5; +#X text 30 4 Making waveforms with corners by specifying line segment +slopes; +#X text 136 67 up; +#X text 209 68 down; +#X text 29 317 Occasionally a second method for making corners is more +convenient. Here we specify the slopes of the rising and falling segments +(as always \, in units per cycle). We then make a triangle wave with +a corner at (0 \, 0) and another one \, placed somewhere within the +cycle. The slopes of the two lines determine the second point \, which +will have an x value of t/(s+t) (if we let s denote the rising slope +and t the falling one \, both as positive numbers). The y value is +st/(s+t). If we wish instead to specify the corner location (x \, y) +(with x in cycles \, 0<x<1) we set s = y/x and t = y/(1-x). The DC +value is y/2.; +#X connect 5 0 15 1; +#X connect 6 0 5 0; +#X connect 7 0 18 1; +#X connect 8 0 7 0; +#X connect 9 0 10 0; +#X connect 10 0 4 0; +#X connect 11 0 15 0; +#X connect 11 0 16 0; +#X connect 12 0 11 0; +#X connect 15 0 19 0; +#X connect 16 0 17 0; +#X connect 17 0 18 0; +#X connect 18 0 19 1; +#X connect 19 0 3 0; +#X connect 19 0 4 0; diff --git a/pd/doc/3.audio.examples/J06.enveloping.pd b/pd/doc/3.audio.examples/J06.enveloping.pd new file mode 100644 index 00000000..52bae857 --- /dev/null +++ b/pd/doc/3.audio.examples/J06.enveloping.pd @@ -0,0 +1,97 @@ +#N canvas 4 -26 874 736 12; +#N canvas 0 0 450 300 graph1 0; +#X array \$0-waveform 882 float 0; +#X coords 0 1.02 881 -1.02 200 130 1; +#X restore 639 379 graph; +#X floatatom 47 25 0 0 20 0 - - -; +#N canvas 0 0 450 300 graph1 0; +#X array \$0-env 22050 float 0; +#X coords 0 1.02 22049 -1.02 200 130 1; +#X restore 638 189 graph; +#X obj 47 52 phasor~; +#X text 126 2 ENVELOPE GENERATORS FROM LINE SEGMENTS; +#X obj 19 514 output~; +#X text 610 698 updated for Pd version 0.39; +#X obj 46 98 *~; +#X obj 11 165 -~; +#X obj 10 214 *~; +#X floatatom 68 75 3 0 100 0 - - -; +#X obj 16 244 min~; +#X floatatom 68 123 3 0 100 0 - - -; +#X obj 68 146 / 100; +#X floatatom 68 172 3 0 100 0 - - -; +#X obj 60 386 *~ 2; +#X obj 60 409 min~; +#X obj 110 386 -~ 1; +#X obj 60 358 phasor~ 200; +#X obj 18 477 *~; +#X obj 27 326 tabwrite~ \$0-env; +#X obj 38 306 bng 15 250 50 0 empty empty empty 0 -6 0 8 -262144 -1 +-1; +#X obj 68 195 * -1; +#X obj 69 457 bng 15 250 50 0 empty empty empty 0 -6 0 8 -262144 -1 +-1; +#X obj 61 478 tabwrite~ \$0-waveform; +#X obj 111 409 *~ -3; +#X obj 60 432 -~ 0.5; +#X text 639 514 ----- 0.02 second ----; +#X text 86 24 <-- frequency (Hz.); +#X text 636 322 ----- 0.5 second ------; +#X text 107 72 <-- slope of rise segment. Just multiply this by the +phase to make the segment.; +#X text 129 140 Subtract this to make the phasor cross zero at the +desired point of the cycle.; +#X text 107 173 <-- slope of decay segment.; +#X text 112 190 multiply the phasor (with the zero crossing shifted +as above) by the desired slope \, negating it so the segment points +downward.; +#X text 63 244 minimum of rise and decay segments (makes a triangle +wave); +#X obj 17 267 clip~ 0 1; +#X text 109 266 clip the triangle wave to between 0 and 1 \, to make +the sustain and silent regions.; +#X text 108 121 <-- Duty cycle (end of decay segment as % of cycle.) +; +#X text 60 304 <-- click to graph envelope shape; +#X text 91 456 <-- click to graph audio waveform; +#X text 172 364 this makes a quick-and-dirty triangle wave; +#X text 172 382 as described in the previous patch. It's; +#X text 172 419 to listen to.; +#X text 97 511 You can make a phasor-generated envelope generator using +"min" and "clip" to combine line segments. Here a rise segment starts +at phase 0 \, and a decay segment passes through zero at a controllable +point (the "duty cycle" \, as a percentage of a cycle.) Each has a +controllable slope (in units per cycle). The resulting triangle wave +(the minimum of the rise and decay segments) is limited to 1 \, thus +making a flat "sustain" segment (unless the rise and decay segments +meet at a value less than one \, in which case there is none). Limiting +below by 0 prevents us from following the decay segment into negative +values. Reasonable values to start with are 6 Hz. frequency \, rise +and decay slope 10 \, duty cycle 75%.; +#X text 173 401 used here so we'll have something; +#X connect 1 0 3 0; +#X connect 3 0 7 0; +#X connect 3 0 8 0; +#X connect 7 0 11 1; +#X connect 8 0 9 0; +#X connect 9 0 11 0; +#X connect 10 0 7 1; +#X connect 11 0 35 0; +#X connect 12 0 13 0; +#X connect 13 0 8 1; +#X connect 14 0 22 0; +#X connect 15 0 16 0; +#X connect 16 0 26 0; +#X connect 17 0 25 0; +#X connect 18 0 15 0; +#X connect 18 0 17 0; +#X connect 19 0 5 0; +#X connect 19 0 5 1; +#X connect 21 0 20 0; +#X connect 22 0 9 1; +#X connect 23 0 24 0; +#X connect 25 0 16 1; +#X connect 26 0 24 0; +#X connect 26 0 19 1; +#X connect 35 0 19 0; +#X connect 35 0 20 0; diff --git a/pd/doc/3.audio.examples/J07.oversampling.pd b/pd/doc/3.audio.examples/J07.oversampling.pd new file mode 100644 index 00000000..0b124c03 --- /dev/null +++ b/pd/doc/3.audio.examples/J07.oversampling.pd @@ -0,0 +1,61 @@ +#N canvas 343 48 578 498 12; +#N canvas 158 4 728 420 16x 0; +#X obj 21 151 *~ 0.064; +#X obj 21 174 rpole~ 0.93538; +#X obj 21 197 *~ 0.00431; +#X obj 21 220 cpole~ 0.96559 0.05592; +#X obj 21 246 cpole~ 0.96559 -0.05592; +#X obj 21 269 *~ 0.125; +#X obj 21 292 rzero~ -1; +#X obj 21 315 rzero~ -1; +#X obj 21 338 rzero~ -1; +#X obj 21 66 phasor~; +#X obj 204 29 block~ 1024 1 16; +#X obj 21 31 inlet; +#X obj 21 372 outlet~; +#X text 170 151 These objects make a 3-pole \, 3-zero Butterwirth low-pass +filter with cutoff at 15kHz (assuming 44100 sample rate.) The filter +was designed using the "buttercoef3" abstraction introduced in patch +H13.butterworth.pd in this series.; +#X connect 0 0 1 0; +#X connect 1 0 2 0; +#X connect 2 0 3 0; +#X connect 3 0 4 0; +#X connect 3 1 4 1; +#X connect 4 0 5 0; +#X connect 5 0 6 0; +#X connect 6 0 7 0; +#X connect 7 0 8 0; +#X connect 8 0 12 0; +#X connect 9 0 0 0; +#X connect 11 0 9 0; +#X restore 23 148 pd 16x; +#X floatatom 23 111 7 0 0 0 - - -; +#X obj 109 149 phasor~; +#X obj 22 194 output~; +#X obj 108 194 output~; +#X obj 23 83 mtof; +#X floatatom 23 59 3 -24 135 0 - - -; +#X text 131 18 UPSAMPLING TO CONTROL FOLDOVER; +#X text 56 57 <-- pitch; +#X text 126 250 not; +#X text 22 265 sampled; +#X text 26 249 16x up-; +#X text 20 293 The "pd 16x" subpatch at left contains a phasor~ object +\, but is locally upsampled by a factor of sixteen. Without upsampling +\, partials as low as 24 Khz. fold back over into the audible range. +With upsampling \, the first audibly folding over partial is at almost +700 Hz \, 29 times higher. The relevant partials will be 29 times \, +or almost 30 dB \, quieter when upsampled.; +#X text 21 403 A third-order Butterworth filter is used inside the +"pd 16x" subpatch - without that \, the internal signal would fold +over as it gets downsampled at the outlet~ object.; +#X text 324 464 Updated for Pd version 0.39; +#X connect 0 0 3 0; +#X connect 0 0 3 1; +#X connect 1 0 0 0; +#X connect 1 0 2 0; +#X connect 2 0 4 0; +#X connect 2 0 4 1; +#X connect 5 0 1 0; +#X connect 6 0 5 0; diff --git a/pd/doc/3.audio.examples/J08.classicsynth.pd b/pd/doc/3.audio.examples/J08.classicsynth.pd new file mode 100644 index 00000000..ae9ce754 --- /dev/null +++ b/pd/doc/3.audio.examples/J08.classicsynth.pd @@ -0,0 +1,135 @@ +#N canvas 203 294 592 528 12; +#N canvas 158 4 781 654 16x 0; +#X obj 69 345 *~ 0.064; +#X obj 69 368 rpole~ 0.93538; +#X obj 69 391 *~ 0.00431; +#X obj 69 414 cpole~ 0.96559 0.05592; +#X obj 69 440 cpole~ 0.96559 -0.05592; +#X obj 69 463 *~ 0.125; +#X obj 69 486 rzero~ -1; +#X obj 69 509 rzero~ -1; +#X obj 69 532 rzero~ -1; +#X obj 63 97 phasor~; +#X obj 69 566 outlet~; +#X obj 86 151 wrap~; +#X obj 86 127 -~; +#X obj 86 175 *~; +#X obj 63 204 +~; +#X obj 271 156 phasor~; +#X obj 294 210 wrap~; +#X obj 294 186 -~; +#X obj 294 234 *~; +#X obj 271 263 +~; +#X obj 64 271 +~; +#X obj 457 31 block~ 1024 1 16; +#X obj 62 29 inlet; +#X obj 250 34 r osc-params; +#X obj 250 57 unpack 0 0 0 0 0 0; +#X obj 272 100 *~; +#X obj 272 128 +~; +#X msg 341 338 \; osc-params 0.5 -0.5 0.5 0.5 1 0.5; +#X obj 341 312 loadbang; +#X connect 0 0 1 0; +#X connect 1 0 2 0; +#X connect 2 0 3 0; +#X connect 3 0 4 0; +#X connect 3 1 4 1; +#X connect 4 0 5 0; +#X connect 5 0 6 0; +#X connect 6 0 7 0; +#X connect 7 0 8 0; +#X connect 8 0 10 0; +#X connect 9 0 12 0; +#X connect 9 0 14 0; +#X connect 11 0 13 0; +#X connect 12 0 11 0; +#X connect 13 0 14 1; +#X connect 14 0 20 0; +#X connect 15 0 17 0; +#X connect 15 0 19 0; +#X connect 16 0 18 0; +#X connect 17 0 16 0; +#X connect 18 0 19 1; +#X connect 19 0 20 1; +#X connect 20 0 0 0; +#X connect 22 0 9 0; +#X connect 22 0 25 0; +#X connect 23 0 24 0; +#X connect 24 0 12 1; +#X connect 24 1 13 1; +#X connect 24 2 17 1; +#X connect 24 3 18 1; +#X connect 24 4 25 1; +#X connect 24 5 26 1; +#X connect 25 0 26 0; +#X connect 26 0 15 0; +#X connect 28 0 27 0; +#X restore 41 160 pd 16x; +#X obj 44 255 output~; +#X text 333 501 Updated for Pd version 0.39; +#X text 151 7 THE CLASSIC SUBTRACTIVE SYNTH SOUND; +#X obj 152 132 *~; +#X obj 151 102 +~ 0.2; +#X obj 151 156 *~ 2000; +#X obj 108 221 *~; +#X obj 43 218 *~; +#X obj 41 122 mtof; +#X obj 41 13 r \$0-note; +#X obj 41 62 makenote 1; +#X obj 404 150 + 20; +#X obj 404 102 metro 300; +#X obj 404 80 tgl 15 0 empty empty empty 0 -6 0 8 -262144 -1 -1 0 1 +; +#X obj 404 201 s \$0-note; +#X obj 404 125 random 70; +#X obj 42 192 vcf~ 3; +#X floatatom 228 112 3 0 0 0 - - -; +#X floatatom 228 157 7 0 0 0 - - -; +#X obj 228 133 mtof; +#X obj 108 196 adsr 2 30 200 50 500; +#X obj 151 77 adsr 1 10 200 50 500; +#X obj 404 175 pack 0 200; +#X obj 41 92 poly 1 1; +#X obj 41 36 unpack; +#X floatatom 480 80 3 0 0 0 - - -; +#X floatatom 489 154 3 0 0 0 - - -; +#X text 31 323 Now that we can make reasonably high-quality classic +waveforms using upsampling \, we combine an upsampled oscillator with +a "vcf" filter and ADSR generators to control the filter resonant frequency +and the amplitude to make the classic subtractive synthesis sound. +Send an "s \$0-note" object a (pitch \, duration) pair to play a note. +(Classic VC synths did not have velocity sensitive keyboards!) You +can add controls to change the parameters of the ADSR envelopes and/or +the vcf~ "Q" parameter. THe oscillators' waveforms and tuning relationship +is controlled by other parameters set within the "pd 16x" window.; +#X connect 0 0 17 0; +#X connect 4 0 6 0; +#X connect 5 0 4 0; +#X connect 5 0 4 1; +#X connect 6 0 17 1; +#X connect 7 0 8 1; +#X connect 8 0 1 0; +#X connect 8 0 1 1; +#X connect 9 0 0 0; +#X connect 10 0 25 0; +#X connect 11 0 24 0; +#X connect 11 1 24 1; +#X connect 12 0 23 0; +#X connect 13 0 16 0; +#X connect 14 0 13 0; +#X connect 16 0 12 0; +#X connect 17 0 8 0; +#X connect 18 0 20 0; +#X connect 19 0 6 1; +#X connect 20 0 19 0; +#X connect 21 0 7 0; +#X connect 21 0 7 1; +#X connect 22 0 5 0; +#X connect 23 0 15 0; +#X connect 24 1 9 0; +#X connect 24 2 22 0; +#X connect 24 2 21 0; +#X connect 25 0 11 0; +#X connect 25 1 11 2; +#X connect 26 0 13 1; +#X connect 27 0 23 1; diff --git a/pd/doc/3.audio.examples/J09.bandlimited.pd b/pd/doc/3.audio.examples/J09.bandlimited.pd new file mode 100644 index 00000000..38247473 --- /dev/null +++ b/pd/doc/3.audio.examples/J09.bandlimited.pd @@ -0,0 +1,216 @@ +#N canvas 33 1 608 881 12; +#X floatatom 201 163 0 0 0 0 - - -; +#X obj 53 387 -~; +#X obj 201 237 /~; +#X obj 208 214 clip~ 1 999999; +#X obj 76 195 phasor~; +#X obj 88 257 *~; +#X obj 88 281 clip~ -0.5 0.5; +#X floatatom 76 147 0 0 0 0 - - -; +#X floatatom 201 115 0 0 0 0 - - -; +#X obj 201 139 mtof; +#X text 208 45 band limit (MIDI units); +#X obj 201 67 loadbang; +#X obj 88 305 *~ 1000; +#X obj 88 329 +~ 501; +#X obj 76 219 -~ 0.5; +#X text 219 397 graph output; +#X obj 76 101 samplerate~; +#X obj 76 125 / 512; +#N canvas 49 311 450 300 fft 0; +#X obj 31 41 inlet~; +#X obj 35 85 rfft~; +#X obj 34 118 *~; +#X obj 78 118 *~; +#X obj 34 161 sqrt~; +#X obj 37 201 expr~ 50 + 20 * log($v1)/log(10); +#X obj 38 235 max~ 0; +#X obj 254 28 block~ 512; +#X obj 33 263 tabsend~ \$0-fft; +#X connect 0 0 1 0; +#X connect 1 0 2 0; +#X connect 1 0 2 1; +#X connect 1 1 3 0; +#X connect 1 1 3 1; +#X connect 2 0 4 0; +#X connect 3 0 4 0; +#X connect 4 0 5 0; +#X connect 5 0 6 0; +#X connect 6 0 8 0; +#X restore 126 423 pd fft; +#N canvas 0 0 450 300 graph1 0; +#X array \$0-fft 256 float 3; +#A 0 8.35364 88.2226 82.204 78.6857 76.1917 74.2598 72.6836 71.3537 +70.204 69.1927 68.2904 67.4768 66.7365 66.0581 65.4323 64.8524 64.3122 +63.8074 63.3336 62.8881 62.4675 62.0699 61.693 61.3352 60.9946 60.6703 +60.3606 60.0649 59.7817 59.5107 59.2506 59.0011 58.7612 58.5307 58.3086 +58.0948 57.8885 57.6896 57.4975 57.3119 57.1324 56.9588 56.7906 56.6279 +56.4699 56.3169 56.1681 56.0239 55.8835 55.7472 55.6144 55.4853 55.3594 +55.2368 55.1171 55.0005 54.8864 54.7751 54.6661 54.5596 54.4552 54.3531 +54.2528 54.1546 54.0581 53.9635 53.8703 53.7788 53.6886 53.5999 53.5124 +53.4262 53.341 53.257 53.1738 53.0917 53.0103 52.9299 52.85 52.771 +52.6924 52.6146 52.537 52.4601 52.3835 52.3073 52.2313 52.1556 52.0801 +52.0048 51.9295 51.8545 51.7793 51.7042 51.629 51.5538 51.4784 51.4029 +51.3271 51.2513 51.175 51.0985 51.0216 50.9444 50.8667 50.7887 50.7102 +50.6312 50.5516 50.4716 50.3909 50.3097 50.2277 50.1452 50.0619 49.978 +49.8932 49.8078 49.7214 49.6344 49.5464 49.4576 49.3678 49.2771 49.1854 +49.0929 48.9992 48.9046 48.8089 48.7121 48.6142 48.5152 48.415 48.3137 +48.2111 48.1073 48.0022 47.8959 47.7882 47.6792 47.5688 47.4571 47.3439 +47.2293 47.1131 46.9956 46.8764 46.7558 46.6334 46.5096 46.384 46.2568 +46.1278 45.9972 45.8646 45.7304 45.5942 45.4563 45.3163 45.1746 45.0306 +44.8849 44.7369 44.5869 44.4347 44.2804 44.1238 43.965 43.8038 43.6404 +43.4744 43.3062 43.1352 42.9619 42.7858 42.6072 42.4257 42.2417 42.0546 +41.8649 41.6719 41.4762 41.2771 41.0752 40.8697 40.6613 40.4491 40.2338 +40.0147 39.7922 39.5657 39.3357 39.1016 38.8637 38.6214 38.3752 38.1243 +37.8694 37.6096 37.3454 37.076 36.8021 36.5227 36.2385 35.9484 35.6533 +35.3519 35.0451 34.7318 34.4127 34.0866 33.7542 33.4145 33.0681 32.7138 +32.3524 31.9824 31.6049 31.2182 30.8233 30.4185 30.0049 29.5806 29.1467 +28.7012 28.2454 27.7769 27.297 26.8034 26.2972 25.7759 25.2407 24.6887 +24.1212 23.5348 22.9309 22.3055 21.6598 20.9892 20.2947 19.5705 18.8168 +18.0266 17.1987 16.3231 15.3963 14.404 13.3362 12.1694 10.8809 9.42496 +7.74107 5.71798 3.15337 0 0; +#X coords 0 100 256 0 200 140 1; +#X restore 375 275 graph; +#X floatatom 375 425 5 0 0 0 - - -; +#X floatatom 375 471 5 0 0 0 - - -; +#X obj 52 443 output~; +#X obj 88 353 tabread4~ \$0-transition; +#X obj 201 186 * 0.4; +#X msg 201 91 136.766; +#X obj 375 447 tabread \$0-fft; +#X obj 195 400 bng 15 250 50 0 empty empty empty 0 -6 0 8 -262144 -1 +-1; +#X obj 195 422 tabwrite~ \$0-out; +#N canvas 0 0 450 300 graph1 0; +#X array \$0-out 882 float 0; +#X coords 0 1 882 -1 200 140 1; +#X restore 378 108 graph; +#X text 75 15 BAND-LIMITED SAWTOOTH GENERATOR USING A TRANSITION TABLE +; +#X obj 76 60 loadbang; +#X obj 76 83 bng 15 250 50 0 empty empty empty 0 -6 0 8 -262144 -1 +-1; +#X text 39 657 Now any time we wish to make a discontinuity in the +output signal \, we make it look exactly like the bandlimited square +wave looks. We do this by reading through the table we recorded \, +carefully adding a "digital" \, non-band-limited \, sawtooth to "array1" +so that the discontinuities in the two cancel out and what you have +left is the transition in the table.; +#N canvas 151 52 754 678 transition-table 0; +#X obj 428 534 cos~; +#X obj 262 534 cos~; +#X obj 214 529 cos~; +#X msg 158 598 bang; +#X text 242 138 back the phase up one sample; +#X msg 295 444 -0.0005; +#X obj 262 508 *~ 3; +#X obj 427 510 *~ 5; +#X obj 262 559 *~ 0.33333; +#X obj 427 560 *~ -0.2; +#X obj 214 557 *~ -1; +#X msg 159 425 bang; +#X obj 213 468 phasor~ 22.05; +#X obj 214 590 *~ 0.57692; +#X obj 204 259 cos~; +#X obj 156 254 cos~; +#X msg 100 323 bang; +#X msg 13 195 \; pd dsp 1; +#X msg 237 169 -0.0005; +#X obj 204 233 *~ 3; +#X obj 204 284 *~ 0.33333; +#X obj 156 282 *~ -1; +#X msg 100 150 bang; +#X obj 155 193 phasor~ 22.05; +#X obj 156 315 *~ 0.75; +#X obj 214 617 tabwrite~ \$0-transition; +#X obj 156 342 tabwrite~ \$0-transition; +#X obj 100 128 loadbang; +#X text 292 216 twice the table length; +#X text 280 193 period is 2000 samples \,; +#X text 80 369 This one is used - first and third harmonics only.; +#X text 28 644 This alternate one puts in harmonics 1 \, 3 \, and 5 +; +#N canvas 0 0 450 300 graph1 0; +#X array \$0-transition 1002 float 0; +#X coords 0 1 1002 -1 200 140 1; +#X restore 539 32 graph; +#X text 537 179 ----- 1002 samples ----; +#X text 24 27 This network puts a half cycle of a band-limited square +wave into the table "array1."; +#X text 22 64 Logically the half-cycle is in samples 1 through 1000 +\; samples 0 and 1001 are provided so that the 4-point interpolation +will work everywhere.; +#X connect 0 0 9 0; +#X connect 1 0 8 0; +#X connect 2 0 10 0; +#X connect 3 0 25 0; +#X connect 5 0 12 1; +#X connect 6 0 1 0; +#X connect 7 0 0 0; +#X connect 8 0 13 0; +#X connect 9 0 13 0; +#X connect 10 0 13 0; +#X connect 11 0 5 0; +#X connect 11 0 3 0; +#X connect 12 0 2 0; +#X connect 12 0 6 0; +#X connect 12 0 7 0; +#X connect 13 0 25 0; +#X connect 14 0 20 0; +#X connect 15 0 21 0; +#X connect 16 0 26 0; +#X connect 18 0 23 1; +#X connect 19 0 14 0; +#X connect 20 0 24 0; +#X connect 21 0 24 0; +#X connect 22 0 18 0; +#X connect 22 0 17 0; +#X connect 22 0 16 0; +#X connect 23 0 15 0; +#X connect 23 0 19 0; +#X connect 24 0 26 0; +#X connect 27 0 22 0; +#X restore 182 465 pd transition-table; +#X text 351 853 updated for Pd version 0.39; +#X text 37 515 A more sophisticated way to control foldover in sawtooth +waves is to replace the once-a-cycle jump with a bandlimited transition. +To get a band-limited transition we synthesize a band-limited square +wave and harvest the transition from the middle of the top half to +the middle of the bottom half. Here we use a square wave at SR/10 \, +so that only partials 1 and 3 fit below the Nyquist. The transition +should take 1/2 period \, or 5 samples. The table is calculated and +stored in the "transition-table" subpatch.; +#X text 40 767 The "band limit" controls how fast the transition table +is read. If it is set to the Nyquist frequency the table is read at +0.4 times the Nyquist \, or five samples a cycle. Lowering the band +limit cuts off the partials of the generated sawtooth wave at frequencies +below the Nyquist.; +#X connect 0 0 24 0; +#X connect 1 0 18 0; +#X connect 1 0 22 0; +#X connect 1 0 22 1; +#X connect 1 0 28 0; +#X connect 2 0 5 1; +#X connect 3 0 2 1; +#X connect 4 0 14 0; +#X connect 5 0 6 0; +#X connect 6 0 12 0; +#X connect 7 0 4 0; +#X connect 7 0 3 0; +#X connect 8 0 9 0; +#X connect 9 0 0 0; +#X connect 11 0 25 0; +#X connect 12 0 13 0; +#X connect 13 0 23 0; +#X connect 14 0 5 0; +#X connect 14 0 1 1; +#X connect 16 0 17 0; +#X connect 17 0 7 0; +#X connect 20 0 26 0; +#X connect 23 0 1 0; +#X connect 24 0 2 0; +#X connect 25 0 8 0; +#X connect 26 0 21 0; +#X connect 27 0 28 0; +#X connect 31 0 32 0; +#X connect 32 0 16 0; diff --git a/pd/doc/3.audio.examples/buttercoef3.pd b/pd/doc/3.audio.examples/buttercoef3.pd new file mode 100644 index 00000000..6d15d6af --- /dev/null +++ b/pd/doc/3.audio.examples/buttercoef3.pd @@ -0,0 +1,80 @@ +#N canvas 139 346 714 532 10; +#X obj 63 51 inlet; +#X floatatom 522 134 5 0 0 0 - - -; +#X obj 101 153 t f f; +#X msg 101 108 0.667; +#X msg 82 283 0; +#X obj 517 270 loadbang; +#X obj 528 298 inlet; +#X obj 517 322 f; +#X obj 517 346 expr 1 - 2*$f1; +#X obj 63 79 t b b b f; +#X obj 205 228 * -1; +#X obj 163 228 t f f; +#X obj 63 391 f; +#X obj 30 463 outlet; +#X text 515 237 1 to normalize at Nyquist; +#X text 59 30 characteristic frequency \, 0(DC) to 1(Nyquist); +#X obj 283 470 outlet; +#X obj 439 472 outlet; +#X text 439 494 imag2a; +#X text 283 492 real1; +#X text 374 494 real2; +#X obj 500 473 outlet; +#X text 500 495 imag2b; +#X obj 373 470 outlet; +#X text 27 485 normalizer1; +#X obj 173 470 outlet; +#X text 170 492 normalizer2; +#X obj 156 436 expr (($f2-$f1)*($f2-$f1)+$f3*$f3); +#X obj 63 412 t f f; +#X obj 101 176 expr (1 - $f2*$f2) / (1 + $f2*$f2 + 2*$f2*cos($f1)) +; +#X obj 163 205 expr 2*$f2*sin($f1) / (1 + $f2*$f2 + 2*$f2*cos($f1)) +; +#X obj 82 307 expr (1 - $f2*$f2) / (1 + $f2*$f2 + 2*$f2*cos($f1)); +#X obj 522 89 clip 0 1; +#X obj 522 111 expr tan($f1*1.57); +#X obj 101 131 expr $f1*1.5708; +#X text 515 251 0 to normalize at DC; +#X text 119 4 3-pole (or zero) Butterworth filter coefficient calculator +; +#X text 145 109 "theta" in units of pi/2; +#X text 211 138 conjugate pair of pole/zero locations:; +#X text 197 155 real part: (1-r*r)/(1+r*r-2rcos(th)); +#X text 245 226 imaginary part: 2rsin(th)/(...); +#X text 270 282 real-valued one \, theta=0; +#X obj 30 439 expr abs($f1-$f2); +#X connect 0 0 9 0; +#X connect 1 0 29 1; +#X connect 1 0 30 1; +#X connect 1 0 31 1; +#X connect 2 0 29 0; +#X connect 2 1 30 0; +#X connect 3 0 34 0; +#X connect 4 0 31 0; +#X connect 5 0 7 0; +#X connect 6 0 7 0; +#X connect 7 0 8 0; +#X connect 8 0 12 1; +#X connect 9 0 12 0; +#X connect 9 1 4 0; +#X connect 9 2 3 0; +#X connect 9 3 32 0; +#X connect 10 0 21 0; +#X connect 11 0 17 0; +#X connect 11 0 27 2; +#X connect 11 1 10 0; +#X connect 12 0 28 0; +#X connect 27 0 25 0; +#X connect 28 0 42 0; +#X connect 28 1 27 0; +#X connect 29 0 23 0; +#X connect 29 0 27 1; +#X connect 30 0 11 0; +#X connect 31 0 16 0; +#X connect 31 0 42 1; +#X connect 32 0 33 0; +#X connect 33 0 1 0; +#X connect 34 0 2 0; +#X connect 42 0 13 0; diff --git a/pd/doc/3.audio.examples/butterworth3~.pd b/pd/doc/3.audio.examples/butterworth3~.pd new file mode 100644 index 00000000..9b6511c6 --- /dev/null +++ b/pd/doc/3.audio.examples/butterworth3~.pd @@ -0,0 +1,104 @@ +#N canvas -21 471 656 598 10; +#X obj 59 313 rpole~; +#X obj 58 379 cpole~; +#X obj 82 410 cpole~; +#X obj 58 351 *~; +#X msg 488 421 clear; +#X obj 127 160 loadbang; +#X obj 131 468 rzero~; +#X obj 131 519 czero~; +#X obj 156 545 czero~; +#X obj 131 497 /~; +#X obj 397 257 tgl 15 0 empty empty empty 0 -6 0 8 -262144 -1 -1 0 +50; +#X obj 59 289 *~; +#X obj 131 446 /~; +#X obj 171 207 samplerate~; +#X obj 171 228 / 2; +#X obj 127 250 / 22050; +#X obj 127 208 f \$1; +#X obj 127 228 t f b; +#X obj 135 181 inlet; +#X obj 397 164 loadbang; +#X obj 405 185 inlet; +#X obj 263 162 loadbang; +#X obj 307 209 samplerate~; +#X obj 307 230 / 2; +#X obj 263 252 / 22050; +#X obj 263 230 t f b; +#X obj 271 183 inlet; +#X obj 58 163 inlet~; +#X obj 488 166 inlet; +#X obj 155 568 outlet~; +#X obj 263 210 f \$2; +#X obj 397 212 f \$3; +#X text 58 142 audio; +#X text 133 140 lp freq; +#X text 263 142 hp freq; +#X text 395 146 hi/lo norm; +#X text 490 143 clear; +#X text 68 10 3-pole \, 3-zero butterworth lp/hp/shelving filter. Args: +lp freq \, hp freq \, normalize-hi. Inlets: input signal \, lo freq +\, hi freq \, hi norm \, reset.; +#X text 70 75 For high-pass: set LP freq =0 and hi/lo to 1; +#X text 70 56 For low-pass: set HP freq >= SR/2 and hi/lo to 0; +#X text 69 92 Shelving: HP and LP specify shelving band. Gain difference +is about HP/LP cubed (so HP=2LP should give about 18 dB \, for example.) +; +#X obj 127 272 buttercoef3; +#X obj 198 429 buttercoef3; +#X connect 0 0 3 0; +#X connect 1 0 2 0; +#X connect 1 1 2 1; +#X connect 2 0 12 0; +#X connect 3 0 1 0; +#X connect 4 0 0 0; +#X connect 4 0 1 0; +#X connect 4 0 2 0; +#X connect 4 0 6 0; +#X connect 4 0 7 0; +#X connect 4 0 8 0; +#X connect 5 0 16 0; +#X connect 6 0 9 0; +#X connect 7 0 8 0; +#X connect 7 1 8 1; +#X connect 8 0 29 0; +#X connect 9 0 7 0; +#X connect 10 0 41 1; +#X connect 10 0 42 1; +#X connect 11 0 0 0; +#X connect 12 0 6 0; +#X connect 13 0 14 0; +#X connect 14 0 15 1; +#X connect 15 0 41 0; +#X connect 16 0 17 0; +#X connect 17 0 15 0; +#X connect 17 1 13 0; +#X connect 18 0 16 0; +#X connect 19 0 31 0; +#X connect 20 0 31 0; +#X connect 21 0 30 0; +#X connect 22 0 23 0; +#X connect 23 0 24 1; +#X connect 24 0 42 0; +#X connect 25 0 24 0; +#X connect 25 1 22 0; +#X connect 26 0 30 0; +#X connect 27 0 11 0; +#X connect 28 0 4 0; +#X connect 30 0 25 0; +#X connect 31 0 10 0; +#X connect 41 0 11 1; +#X connect 41 1 3 1; +#X connect 41 2 0 1; +#X connect 41 3 1 2; +#X connect 41 3 2 2; +#X connect 41 4 1 3; +#X connect 41 5 2 3; +#X connect 42 0 12 1; +#X connect 42 1 9 1; +#X connect 42 2 6 1; +#X connect 42 3 7 2; +#X connect 42 3 8 2; +#X connect 42 4 7 3; +#X connect 42 5 8 3; diff --git a/pd/doc/3.audio.examples/filter-graph1.pd b/pd/doc/3.audio.examples/filter-graph1.pd new file mode 100644 index 00000000..747c283e --- /dev/null +++ b/pd/doc/3.audio.examples/filter-graph1.pd @@ -0,0 +1,84 @@ +#N canvas -4 364 603 514 10; +#X obj 145 292 f; +#X obj 175 292 + 1; +#X obj 46 160 t b b; +#X msg 161 268 0; +#X obj 125 355 sel 1; +#X msg 48 218 0; +#X msg 46 191 1; +#X floatatom 452 292 7 0 0 0 - - -; +#X obj 442 333 phasor~; +#X obj 415 384 cos~; +#X obj 450 384 cos~; +#X obj 449 361 -~ 0.25; +#X obj 46 134 inlet; +#X obj 394 413 outlet~; +#X obj 451 413 outlet~; +#X obj 216 329 t f f; +#X obj 217 391 outlet; +#X msg 114 122 \; pd dsp 1; +#X obj 125 332 >= \$1; +#X msg 498 333 0; +#X obj 145 237 metro; +#X text 166 7 filter-graph1 -- generate sinusoids to test a filter +; +#X text 168 23 arg 1: number of steps - arg2: frequency range; +#X text 40 53 This \, together with its companion filter-graph2 \, +measure a filter's frequency and phase response. Here we count from +0 to n-1 (where n is the table size) and output the index and a complex +sinusoid at each frequency to test.; +#X text 222 192 fudge to estimate settling time; +#X obj 487 67 loadbang; +#X obj 487 105 t b b; +#X obj 519 151 max 1; +#X obj 487 128 f \$2; +#X obj 519 128 f \$1; +#X obj 487 151 /; +#X obj 442 265 *; +#X obj 217 367 pack; +#X floatatom 500 183 5 0 0 0 - - -; +#X floatatom 248 237 5 0 0 0 - - -; +#X obj 487 86 bng 15 250 50 0 empty empty empty 0 -6 0 8 -262144 -1 +-1; +#X obj 202 173 expr max(50 \, 40000/($f2*max($f1 \, 1))); +#X connect 0 0 1 0; +#X connect 0 0 15 0; +#X connect 0 0 18 0; +#X connect 1 0 0 1; +#X connect 2 0 6 0; +#X connect 2 1 3 0; +#X connect 2 1 17 0; +#X connect 3 0 0 1; +#X connect 4 0 5 0; +#X connect 5 0 20 0; +#X connect 6 0 20 0; +#X connect 8 0 11 0; +#X connect 8 0 9 0; +#X connect 9 0 13 0; +#X connect 10 0 14 0; +#X connect 11 0 10 0; +#X connect 12 0 2 0; +#X connect 15 0 32 0; +#X connect 15 1 31 0; +#X connect 15 1 36 0; +#X connect 18 0 4 0; +#X connect 19 0 8 1; +#X connect 20 0 0 0; +#X connect 20 0 19 0; +#X connect 25 0 35 0; +#X connect 26 0 28 0; +#X connect 26 1 29 0; +#X connect 27 0 30 1; +#X connect 28 0 30 0; +#X connect 29 0 27 0; +#X connect 30 0 31 1; +#X connect 30 0 33 0; +#X connect 30 0 36 1; +#X connect 31 0 7 0; +#X connect 31 0 8 0; +#X connect 31 0 32 1; +#X connect 32 0 16 0; +#X connect 35 0 26 0; +#X connect 36 0 20 1; +#X connect 36 0 34 0; +#X connect 36 0 32 1; diff --git a/pd/doc/3.audio.examples/filter-graph2.pd b/pd/doc/3.audio.examples/filter-graph2.pd new file mode 100644 index 00000000..a800957d --- /dev/null +++ b/pd/doc/3.audio.examples/filter-graph2.pd @@ -0,0 +1,121 @@ +#N canvas 72 200 758 579 10; +#X obj 266 177 *~; +#X obj 317 175 *~; +#X obj 182 276 t b b; +#X obj 368 382 atan2; +#X obj 267 302 snapshot~; +#X obj 341 301 snapshot~; +#X obj 450 259 butterworth3~ 80 100000 0; +#X obj 64 135 inlet; +#X obj 368 410 expr $f1 + 6.283 * ($f1 < -0.01); +#X obj 71 417 t b f b; +#X obj 448 457 symbol \$2; +#X obj 519 457 symbol; +#X obj 463 434 t b b; +#X obj 447 504 t b; +#X obj 474 505 t b; +#X msg 447 525 0; +#X msg 474 526 1; +#X obj 447 481 sel symbol; +#X floatatom 447 549 5 0 0 0 - - -; +#X obj 195 493 f; +#X obj 265 135 inlet~; +#X obj 318 135 inlet~; +#X obj 418 134 inlet~; +#X obj 374 495 f; +#X obj 368 442 spigot; +#X obj 333 495 t f b; +#X obj 154 493 t f b; +#X obj 154 521 tabwrite \$1; +#X obj 333 520 tabwrite \$2; +#X obj 637 259 env~ 2048; +#X obj 311 362 f; +#X obj 267 324 t f f b; +#X obj 311 382 dbtopow; +#X obj 137 411 expr sqrt($f1*$f1 + $f2*$f2)/$f3; +#X obj 63 245 sel 0; +#X obj 87 270 - 1; +#X obj 64 156 unpack; +#X obj 117 157 expr 10000/$f1; +#X text 257 102 test sinusoid:; +#X text 272 116 cos; +#X text 325 115 sin; +#X text 397 97 output of filter; +#X text 398 113 we're testing; +#X text 31 103 index and time to next step; +#X text 39 82 ----- from filter-graph1's 3 outlets: -------; +#X text 117 193 low-pass filters; +#X text 118 177 cutoff freq. for; +#X obj 368 360 swap; +#X obj 620 215 t b; +#X text 583 184 clear filters; +#X text 582 198 to start; +#X text 578 452 cbeck if any table; +#X text 577 467 is specified for phase; +#X text 577 483 (don't compute it if; +#X text 578 498 not.); +#X text 31 3 filter-graph2: measures frequency and phase response of +a filter \, which should be driven by a "filter-graph1" object. We +need the three outputs of filter-graph1 \, plus the filter output. +; +#X text 438 55 1: table name for frequency response; +#X text 518 39 creation arguments:; +#X text 438 71 2 (optional): table name for phase response; +#X obj 266 260 butterworth3~ 80 100000 0; +#X connect 0 0 59 0; +#X connect 1 0 6 0; +#X connect 2 0 4 0; +#X connect 2 1 5 0; +#X connect 3 0 8 0; +#X connect 4 0 31 0; +#X connect 5 0 33 1; +#X connect 5 0 47 1; +#X connect 6 0 5 0; +#X connect 7 0 36 0; +#X connect 8 0 24 0; +#X connect 9 0 2 0; +#X connect 9 1 19 1; +#X connect 9 1 23 1; +#X connect 9 2 12 0; +#X connect 10 0 17 0; +#X connect 11 0 17 1; +#X connect 12 0 10 0; +#X connect 12 1 11 0; +#X connect 13 0 15 0; +#X connect 14 0 16 0; +#X connect 15 0 18 0; +#X connect 16 0 18 0; +#X connect 17 0 13 0; +#X connect 17 1 14 0; +#X connect 18 0 24 1; +#X connect 19 0 27 1; +#X connect 20 0 0 0; +#X connect 20 0 29 0; +#X connect 21 0 1 0; +#X connect 22 0 1 1; +#X connect 22 0 0 1; +#X connect 23 0 28 1; +#X connect 24 0 25 0; +#X connect 25 0 28 0; +#X connect 25 1 23 0; +#X connect 26 0 27 0; +#X connect 26 1 19 0; +#X connect 29 0 30 1; +#X connect 30 0 32 0; +#X connect 31 0 33 0; +#X connect 31 1 47 0; +#X connect 31 2 30 0; +#X connect 32 0 33 2; +#X connect 33 0 26 0; +#X connect 34 1 35 0; +#X connect 34 1 48 0; +#X connect 35 0 9 0; +#X connect 36 0 34 0; +#X connect 36 1 37 0; +#X connect 37 0 6 1; +#X connect 37 0 59 1; +#X connect 47 0 3 0; +#X connect 47 1 3 1; +#X connect 48 0 6 4; +#X connect 48 0 59 4; +#X connect 59 0 4 0; |