aboutsummaryrefslogtreecommitdiff
path: root/desiredata/doc/3.audio.examples/I06.timbre.stamp.pd
diff options
context:
space:
mode:
Diffstat (limited to 'desiredata/doc/3.audio.examples/I06.timbre.stamp.pd')
-rw-r--r--desiredata/doc/3.audio.examples/I06.timbre.stamp.pd370
1 files changed, 0 insertions, 370 deletions
diff --git a/desiredata/doc/3.audio.examples/I06.timbre.stamp.pd b/desiredata/doc/3.audio.examples/I06.timbre.stamp.pd
deleted file mode 100644
index 0fd540cd..00000000
--- a/desiredata/doc/3.audio.examples/I06.timbre.stamp.pd
+++ /dev/null
@@ -1,370 +0,0 @@
-#N canvas 72 0 668 530 12;
-#N canvas 147 0 795 617 fft-analysis 0;
-#X obj 94 511 *~;
-#X obj 55 511 *~;
-#X obj 413 356 *~;
-#X obj 372 356 *~;
-#X obj 372 379 +~;
-#X obj 54 183 *~;
-#X obj 54 158 inlet~;
-#X obj 54 206 rfft~;
-#X obj 54 560 *~;
-#X obj 141 245 *~;
-#X obj 372 333 rfft~;
-#X obj 54 535 rifft~;
-#X obj 54 583 outlet~;
-#X obj 107 245 *~;
-#X obj 107 268 +~;
-#X text 458 408 modulus;
-#X obj 107 420 *~;
-#X obj 600 13 block~ 1024 4;
-#X obj 107 398 clip~;
-#X obj 87 184 tabreceive~ \$0-hann;
-#X obj 599 53 loadbang;
-#X obj 148 346 r squelch;
-#X obj 147 369 expr 0.01*$f1*$f1;
-#X obj 107 294 +~ 1e-20;
-#X obj 108 480 *~ 0.00065;
-#X obj 87 560 tabreceive~ \$0-hann;
-#X obj 373 307 *~;
-#X obj 373 282 inlet~;
-#X obj 406 308 tabreceive~ \$0-hann;
-#X obj 107 321 q8_rsqrt~;
-#X obj 372 402 q8_sqrt~;
-#X text 458 425 of control;
-#X text 456 442 amplitude;
-#X text 196 248 reciprocal;
-#X text 199 267 modulus of;
-#X text 195 287 filter input;
-#X text 196 306 amplitude;
-#X msg 599 76 \; pd dsp 1 \; window-size 1024 \; squelch 30 \; squelch-set
-set 30;
-#X text 115 159 filter input;
-#X text 438 282 control source;
-#X text 434 332 Fourier transform;
-#X text 28 17 Internal workings of the timbre stamping algorithm. First
-the "filter input" is treated as in the compressor patch \, multiplying
-each channel amplitude by one over its modulus (but limited by the
-"squelch" parameter.) It is then multiplied by the modulus of the channel
-amplitude for the control source (which is Fourier analyzed in parallel
-with the filter input.);
-#X text 145 422 multiply the two amplitude;
-#X text 143 439 factors (for compression;
-#X text 145 455 and to apply new timbre);
-#X connect 0 0 11 1;
-#X connect 1 0 11 0;
-#X connect 2 0 4 1;
-#X connect 3 0 4 0;
-#X connect 4 0 30 0;
-#X connect 5 0 7 0;
-#X connect 6 0 5 0;
-#X connect 7 0 13 0;
-#X connect 7 0 13 1;
-#X connect 7 0 1 0;
-#X connect 7 1 9 0;
-#X connect 7 1 9 1;
-#X connect 7 1 0 0;
-#X connect 8 0 12 0;
-#X connect 9 0 14 1;
-#X connect 10 0 3 0;
-#X connect 10 0 3 1;
-#X connect 10 1 2 0;
-#X connect 10 1 2 1;
-#X connect 11 0 8 0;
-#X connect 13 0 14 0;
-#X connect 14 0 23 0;
-#X connect 16 0 24 0;
-#X connect 18 0 16 0;
-#X connect 19 0 5 1;
-#X connect 20 0 37 0;
-#X connect 21 0 22 0;
-#X connect 22 0 18 2;
-#X connect 23 0 29 0;
-#X connect 24 0 0 1;
-#X connect 24 0 1 1;
-#X connect 25 0 8 1;
-#X connect 26 0 10 0;
-#X connect 27 0 26 0;
-#X connect 28 0 26 1;
-#X connect 29 0 18 0;
-#X connect 30 0 16 1;
-#X restore 86 444 pd fft-analysis;
-#X text 137 12 CORT&ZACK's SECRET;
-#X text 27 422 filter;
-#X text 29 437 input;
-#X text 232 441 source;
-#X text 233 422 control;
-#X floatatom 53 300 0 0 500 0 - squelch-set -;
-#X obj 53 324 s squelch;
-#X obj 86 468 output~;
-#X msg 157 278 ../sound/bell.aiff;
-#X msg 157 303 ../sound/voice.wav;
-#X msg 157 328 ../sound/voice2.wav;
-#X obj 157 354 s read-sound1;
-#X msg 373 280 ../sound/bell.aiff;
-#X msg 373 305 ../sound/voice.wav;
-#X msg 373 330 ../sound/voice2.wav;
-#X obj 373 355 s read-sound2;
-#X text 386 256 control source;
-#X text 169 255 filter input;
-#X text 255 231 change input sounds;
-#X floatatom 454 409 5 0 0 0 - #0-samp-msec -;
-#X obj 87 394 bng 15 250 50 0 empty empty empty 0 -6 0 8 -262144 -1
--1;
-#X obj 215 395 bng 15 250 50 0 empty empty empty 0 -6 0 8 -262144 -1
--1;
-#N canvas 190 43 661 593 test-signals 0;
-#X obj 90 444 line~;
-#X obj 90 369 f;
-#X obj 90 524 outlet~;
-#X msg 90 423 0 \, \$1 \$2;
-#X obj 90 397 pack 0 0;
-#X obj 190 344 /;
-#X obj 249 325 * 0.001;
-#X obj 90 497 hip~ 5;
-#X obj 35 246 loadbang;
-#X msg 90 322 1;
-#X obj 90 344 metro 1000;
-#X obj 191 302 t b b f;
-#X obj 117 270 t b f;
-#X obj 90 469 tabread4~ \$0-sample;
-#X text 21 28 test signal: looped sample playback;
-#X obj 40 159 hip~ 5;
-#X obj 40 135 adc~ 1;
-#X obj 102 159 s insamprate;
-#X obj 40 98 inlet;
-#X obj 102 135 samplerate~;
-#X obj 116 246 r \$0-samplength;
-#X obj 191 276 r \$0-insamprate;
-#X obj 40 182 tabwrite~ \$0-sample;
-#X obj 398 437 line~;
-#X obj 398 362 f;
-#X obj 398 517 outlet~;
-#X msg 398 416 0 \, \$1 \$2;
-#X obj 398 390 pack 0 0;
-#X obj 498 337 /;
-#X obj 557 318 * 0.001;
-#X obj 398 490 hip~ 5;
-#X obj 343 239 loadbang;
-#X msg 398 315 1;
-#X obj 398 337 metro 1000;
-#X obj 499 295 t b b f;
-#X obj 425 263 t b f;
-#X obj 348 152 hip~ 5;
-#X obj 348 128 adc~ 1;
-#X obj 348 91 inlet;
-#X obj 410 128 samplerate~;
-#X obj 410 152 s insamprate2;
-#X obj 348 175 tabwrite~ \$0-sample2;
-#X obj 424 239 r \$0-samplength2;
-#X obj 499 269 r \$0-insamprate2;
-#X obj 398 462 tabread4~ \$0-sample2;
-#X connect 0 0 13 0;
-#X connect 1 0 4 0;
-#X connect 3 0 0 0;
-#X connect 4 0 3 0;
-#X connect 5 0 4 1;
-#X connect 5 0 10 1;
-#X connect 6 0 5 1;
-#X connect 7 0 2 0;
-#X connect 8 0 9 0;
-#X connect 9 0 10 0;
-#X connect 10 0 1 0;
-#X connect 11 0 9 0;
-#X connect 11 1 5 0;
-#X connect 11 2 6 0;
-#X connect 12 0 9 0;
-#X connect 12 1 5 0;
-#X connect 12 1 1 1;
-#X connect 13 0 7 0;
-#X connect 15 0 22 0;
-#X connect 16 0 15 0;
-#X connect 18 0 19 0;
-#X connect 18 0 16 0;
-#X connect 19 0 17 0;
-#X connect 20 0 12 0;
-#X connect 21 0 11 0;
-#X connect 23 0 44 0;
-#X connect 24 0 27 0;
-#X connect 26 0 23 0;
-#X connect 27 0 26 0;
-#X connect 28 0 27 1;
-#X connect 28 0 33 1;
-#X connect 29 0 28 1;
-#X connect 30 0 25 0;
-#X connect 31 0 32 0;
-#X connect 32 0 33 0;
-#X connect 33 0 24 0;
-#X connect 34 0 32 0;
-#X connect 34 1 28 0;
-#X connect 34 2 29 0;
-#X connect 35 0 32 0;
-#X connect 35 1 28 0;
-#X connect 35 1 24 1;
-#X connect 36 0 41 0;
-#X connect 37 0 36 0;
-#X connect 38 0 39 0;
-#X connect 38 0 37 0;
-#X connect 39 0 40 0;
-#X connect 42 0 35 0;
-#X connect 43 0 34 0;
-#X connect 44 0 30 0;
-#X restore 87 415 pd test-signals;
-#X text 104 393 <- record ->;
-#N canvas 388 86 722 350 insample2 0;
-#N canvas 0 0 450 300 graph1 0;
-#X array \$0-sample2 62079 float 0;
-#X coords 0 1 62078 -1 400 150 1;
-#X restore 298 24 graph;
-#X obj 19 74 unpack s f;
-#X obj 19 184 soundfiler;
-#X text 356 250 read a sample;
-#X obj 276 249 loadbang;
-#X obj 19 100 t s b;
-#X obj 19 135 pack s s;
-#X msg 19 160 read -resize \$1 \$2;
-#X obj 74 46 44100;
-#X obj 19 47 t a b;
-#X obj 19 247 /;
-#X obj 19 271 * 1000;
-#X obj 19 23 r read-sound2;
-#X obj 116 74 s \$0-insamprate2;
-#X obj 75 99 symbol \$0-sample2;
-#X obj 29 208 s \$0-samplength2;
-#X obj 57 247 r \$0-insamprate2;
-#X obj 19 294 s \$0-samp2-msec;
-#X msg 276 273 \; read-sound2 ../sound/voice.wav;
-#X connect 1 0 5 0;
-#X connect 1 1 13 0;
-#X connect 2 0 10 0;
-#X connect 2 0 15 0;
-#X connect 4 0 18 0;
-#X connect 5 0 6 0;
-#X connect 5 1 14 0;
-#X connect 6 0 7 0;
-#X connect 7 0 2 0;
-#X connect 8 0 13 0;
-#X connect 9 0 1 0;
-#X connect 9 1 8 0;
-#X connect 10 0 11 0;
-#X connect 11 0 17 0;
-#X connect 12 0 9 0;
-#X connect 14 0 6 1;
-#X connect 16 0 10 1;
-#X restore 334 430 pd insample2;
-#N canvas 388 86 722 350 insample1 0;
-#N canvas 0 0 450 300 graph1 0;
-#X array \$0-sample 155948 float 0;
-#X coords 0 1 155947 -1 400 150 1;
-#X restore 259 24 graph;
-#X obj 19 74 unpack s f;
-#X obj 19 184 soundfiler;
-#X text 356 250 read a sample;
-#X obj 276 249 loadbang;
-#X obj 19 100 t s b;
-#X obj 75 99 symbol \$0-sample;
-#X obj 19 135 pack s s;
-#X msg 19 160 read -resize \$1 \$2;
-#X obj 74 46 44100;
-#X obj 19 47 t a b;
-#X obj 29 208 s \$0-samplength;
-#X obj 116 74 s \$0-insamprate;
-#X obj 19 247 /;
-#X obj 19 271 * 1000;
-#X obj 19 294 s \$0-samp-msec;
-#X obj 57 247 r \$0-insamprate;
-#X obj 19 23 r read-sound1;
-#X msg 276 273 \; read-sound1 ../sound/bell.aiff;
-#X connect 1 0 5 0;
-#X connect 1 1 12 0;
-#X connect 2 0 11 0;
-#X connect 2 0 13 0;
-#X connect 4 0 18 0;
-#X connect 5 0 7 0;
-#X connect 5 1 6 0;
-#X connect 6 0 7 1;
-#X connect 7 0 8 0;
-#X connect 8 0 2 0;
-#X connect 9 0 12 0;
-#X connect 10 0 1 0;
-#X connect 10 1 9 0;
-#X connect 13 0 14 0;
-#X connect 14 0 15 0;
-#X connect 16 0 13 1;
-#X connect 17 0 10 0;
-#X restore 334 408 pd insample1;
-#X floatatom 453 432 5 0 0 0 - #0-samp2-msec -;
-#N canvas 0 110 565 454 hann-window 0;
-#N canvas 0 0 450 300 graph1 0;
-#X array \$0-hann 1024 float 0;
-#X coords 0 1 1023 0 300 100 1;
-#X restore 82 311 graph;
-#X obj 378 165 osc~;
-#X obj 378 190 *~ -0.5;
-#X obj 378 214 +~ 0.5;
-#X obj 331 247 tabwrite~ \$0-hann;
-#X obj 37 88 r window-size;
-#X obj 38 173 /;
-#X obj 127 142 samplerate~;
-#X obj 38 251 s window-sec;
-#X obj 177 204 swap;
-#X obj 177 228 /;
-#X obj 177 252 s window-hz;
-#X obj 49 201 * 1000;
-#X obj 49 228 s window-msec;
-#X obj 38 115 t f b f;
-#X msg 173 92 resize \$1;
-#X obj 173 116 s \$0-hann;
-#X obj 330 105 r window-hz;
-#X msg 382 130 0;
-#X obj 330 131 t f b;
-#X text 15 8 calculate Hann window table (variable window size) and
-constants window-hz (fundamental frequency of analysis) \, window-sec
-and window-msec (analysis window size in seconds and msec).;
-#X connect 1 0 2 0;
-#X connect 2 0 3 0;
-#X connect 3 0 4 0;
-#X connect 5 0 14 0;
-#X connect 6 0 8 0;
-#X connect 6 0 12 0;
-#X connect 7 0 6 1;
-#X connect 7 0 9 1;
-#X connect 9 0 10 0;
-#X connect 9 1 10 1;
-#X connect 10 0 11 0;
-#X connect 12 0 13 0;
-#X connect 14 0 6 0;
-#X connect 14 0 9 0;
-#X connect 14 1 7 0;
-#X connect 14 2 15 0;
-#X connect 15 0 16 0;
-#X connect 17 0 19 0;
-#X connect 18 0 1 1;
-#X connect 19 0 1 0;
-#X connect 19 1 4 0;
-#X connect 19 1 18 0;
-#X restore 334 455 pd hann-window;
-#X text 509 412 sample lengths \,;
-#X text 510 427 msec;
-#X text 27 35 This is a Fourier-based "vocoder" (perhaps better called
-a "timbre stamp") like the one the Convolution brothers use. The "control
-source" is analyzed to get its spectral envelope \, which is then stamped
-onto the "filter input" by adjusting the amplitudes of its Fourier
-transform. The "filter input" is first whitened by the compression
-algorithm from the previous patch in this series. The best value of
-"squelch" to use depends critically on what kind of sounds are used
-for the filter input and the control source.;
-#X text 402 498 updated for Pd version 0.39;
-#X connect 0 0 8 0;
-#X connect 0 0 8 1;
-#X connect 6 0 7 0;
-#X connect 9 0 12 0;
-#X connect 10 0 12 0;
-#X connect 11 0 12 0;
-#X connect 13 0 16 0;
-#X connect 14 0 16 0;
-#X connect 15 0 16 0;
-#X connect 21 0 23 0;
-#X connect 22 0 23 1;
-#X connect 23 0 0 0;
-#X connect 23 1 0 1;